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Abstract

Understanding and measuring functional connectivity for animals with habitats that have been fragmented by hu-
man activity requires that the biology and movement of  the species be considered. We used least cost paths in GIS 
to test hypotheses regarding how different species of  longhorned beetles likely connect habitats with dispersal. 
We predicted that there would be differences in the functional connectivity of  landscapes depending on species 
larval niche breadth, adult feeding habits, and the potential for use of  non-forest habitats. For the species with very 
specialized larvae, we developed a classification tree to determine areas likely to contain the appropriate species of  
host tree. Connectivity calculated using least cost paths did not out-perform Euclidean distances for three genera-
list beetles.  This was also the case for the specialist beetle species when all forest was considered habitat. However, 
when we delineated habitat based on areas likely to support the host tree the functional connectivity incorpora-
ting least cost paths was a much better predictor than that using Euclidean distances. Generalists may respond to 
fragmented habitat in a binary habitat-matrix way while more specialized species may respond to a mosaic. These 
trends are obscured if  habitat is defined by human perceptions rather than species biology.
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1 Introduction

Connectivity of  the landscape is defined as “…the 
degree to which the landscape facilitates or impe-

des movement among habitat patches” (Taylor et al. 
1993). Properly, then, connectivity is a function of  the 
composition and configuration of  landscape elements 
as well as the movement behaviours and abilities of  
the dispersing organism (Merriam 1984). It follows 
that presence of  a species in a given location is sub-
ject to the composition of  the surrounding landscape, 
which may be thought of  as structurally connected by 
features such as corridors. It has been argued that con-
nectivity should be defined from the point of  view of  
an organism, paying particular attention to behaviou-
ral costs incurred by moving between habitat patches 
(Bélisle 2005). The non-habitat matrix that surrounds 
habitat patches is composed of  various types of  land 
cover, each providing differential probabilities of  mor-
tality, resources, and physical obstacles to an organism 
so this extra-habitat area is often better though of  as 
a mosaic of  different patches or land covers as oppo-
sed to a homogeneous “non-habitat.” Bender & Fah-
rig (2005) used simulation models to show that if  the 
matrix is heterogeneous and an organism responds to 
boundaries between different matrix cover types, the 
variance in distribution that is explained by patch size 
and isolation alone drops dramatically. This indicates 
that the composition of  the matrix should be taken 
into consideration when planning large-scale ecologi-
cal analyses. 

One way of  incorporating an organism’s perception of  
the landscape into connectivity calculations is with ef-
fective distance measures, also known as friction, resis-
tance or cost surfaces. When calculating the effective 
distance between habitat patches, different land cover 
types are assigned different costs and the simplest or 
least-cost path is calculated through them. Effective 
distance measures have been used to investigate the 
movement of  ground beetles (Jopp & Reuter 2005), 
butterflies (Sutcliffe et al. 2003), amphibians (Ray et 

al. 2002; Stevens et al. 2006), squirrels (Verbeylen et 
al. 2003), and grizzly bears (Singleton et al. 2004) and 
have generally met with good success. We determined 
the connectivity of  appropriately scaled landscapes for 
four species of  longhorned beetle that occur in India-
na, U.S.A., in terms of  both Euclidean and effective di-
stances. The study species were the red-headed ash bo-
rer Neoclytus acuminatus acuminatus (Fabricius); the pole 
borer Neandra brunnea (Fabricius) (= Parandra brunnea 
brunnea); Typocerus velutinus velutinus (Olivier); and Uro-
graphis despectus (LeConte).

Neoclytus a. acuminatus and N. brunnea are considered 
pests of  hardwood trees (Solomon 1995). They are 
both established alien species in Europe (Roques 2007; 
Mattson et al. 2007), and their life histories are rela-
tively well known. The larvae of  N. a. acuminatus deve-
lop in a variety of  tree species that are weakened, dy-
ing, dead, or recently felled, and have been responsible 
for the destruction of  over one million board feet of  
ash logs (Craighead 1950; Solomon 1995). Adults are 
short-lived and may not feed (Lacey et al. 2004) though 
they have been observed eating sap in laboratory stu-
dies (Waters 1981). The larvae of  N. brunnea develop 
in the dead inner wood of  live trees or in wood pro-
ducts, and their known hosts include maple, chestnut, 
poplar, pear, black oak, basswood, and elm (Linsley 
& Chemsak 1997). Adults eclose in midsummer, but 
usually remain in their pupal chambers for a few days 
before emerging (Solomon 1995). Many adults do not 
leave their natal piece of  wood to mate and lay eggs 
(Kotinsky 1921; Craighead 1950), so dispersal may ob-
viously be very limited in some cases. Females may de-
posit eggs in a wide variety of  trees and wood products, 
including shade and ornamental trees, fruit trees, and 
telephone or power line poles (Solomon 1995). 

Less is known about the ecology of  the other study 
species. As they are not known pests, available data are 
limited to surveys done over the past 100 years. The 
larvae of  T. v. velutinus feed on the deadwood of  a few 
host species (Knull 1946; Hanula 1993). The adults are 
active fliers and feed on flowers (Blackman 1918; Knull 
1946), and therefore may be involved in pollination. 
Urographis despectus is a larval habitat specialist on pig-
nut hickory (Knull 1946; Linsley & Chemsak 1997), but 
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adult feeding habits are unknown. Each of  these species 
is a member of  a different subfamily within the Ceramby-
cidae (Tab. 1). 

We hypothesized that longhorned beetles perceive the 
landscape as having features with differing levels of  hospi-
tality or cost rather than as a binary pattern of  habitat and 
non-habitat matrix, and that the relative costs of  moving 
through the landscape differ between the four study spe-
cies. We assumed that forest was the best habitat for the 
generalist feeding species N. a. acuminatus, N. brunnea and 
T. v. velutinus, while other types of  land cover may simply 
be crossed to get between habitat patches. For U. despectus, 
we tested two landscapes, one where habitat was forest 
and another where habitat was only areas likely to contain 
pignut hickory as described below. We predicted that in-
corporating both Euclidean and cost distances into func-
tional connectivity calculations would explain significantly 
more variation in the distribution of  each study species 
than using Euclidean distance alone. For example, in Fig. 
1 the effective distance or accumulated cost of  following 
path 2 would still be significant in a model of  occurrence 

that already contained the Euclidean distance or cost of  
path 1. We also predicted that the best cost surfaces for 
each species would reflect aspects of  their ecology: N. a. 
acuminatus would respond positively to urban areas as they 
provide additional wood resources such as stressed trees; 
N. brunnea would respond to urban and field areas, as they 
may contain damaged or stressed trees and utility poles; T. 
v. velutinus would respond to agriculture areas as they con-
tain both large areas of  flowers that serve as adult feeding 
sites and some decaying wood for larval habitat; and U. 
despectus would respond to habitat only as it is a specialized 
larval feeder. In Fig. 1, the specialist habitat is depicted as 
the areas containing trees with non-green foliage, patches 
1 and i. For a beetle with larvae specialized on this species 
of  tree, habitat is not all forest but those parts of  the forest 
that contain the correct larval host (sections of  forest i and 
1 in Fig. 1).  For beetles with generalist larvae, most forest 
should be habitat so that forests i, 1, and 2 in Fig. 1 should 
all serve as habitat. Paths 3 and 4 should indicate effec-
tive distances i-1 and i-2 depending on the cost of  moving 
across different land cover types. 

Table 1. Biological attributes of  the four study species of  longhorned beetles.
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2 Methods

2.1 Sampling and Scaling

Adult beetle presence data were collected from 23 
forest patches in northern Indiana over two sum-

mers (2005 & 2006, Fig. 2). Within these patches, one 
randomly chosen point was sampled in 2005 and two 
more were sampled in 2006. These points were at least 
50 m apart and at least 50 m from the forest edge. Four 
flight intercept traps were placed around each point: 
two Lindgren funnel traps (Phero Tech Inc., Delta, 
Canada), one panel trap for bark beetles (Advanced 
Pheromone Technologies Inc., Portland, USA), and 
one window trap of  JDH’s design. Traps were placed 

approximately 10 m from the center point, one in each 
cardinal direction. Ethylene glycol was used as a killing 
fluid and preservative, and each trap was baited with 
60 mL of  95% ethanol to mimic the odor of  decaying 
wood (Brattli et al. 1988; Chénier and Philogène 1989a, 
1989b). Nalgene bottles (125 mL) with four holes in 
the lid were used and these were refilled to 60 mL at 
each trap visit. Each trap was emptied three to four 
times between early May and early September, and a 
beetle species was recorded as present at a point if  it 
showed up in any trap over the course of  the sum-
mer. Using data from all three sampling points within 
a forest patch, we calculated the mean presence of  the 
beetle in the patch, i.e., present at all points (1), present 
at two out of  three points (0.67), present at one out of  
three points (0.33), or absent from all points (0).

Not every species responds to features in the landscape 
at the same spatial scale. We used the characteristic sca-

Figure 1. A hypothetical landscape with examples of  Euclidean distances (Paths 1 and 4) and Effective distances 
(Paths 2 and 3) between habitat for generalist species (Forest patches i, 1, & 2) and specialist species (Patches i 
& 1). Larval host trees for a specialist species are indicated with non-green foliage. Two of  the four beetle traps 

within sampling arrays are shown in the surveyed patch, i.
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le of  response to habitat (Holland et al. 2004) of  each 
beetle to determine the size of  the landscapes within 
which we would calculate functional connectivity. The 
characteristic scales of  response for each species, based 
on data collected in 2005 from 43 sampling points, are 
as follows: 1200 m for N. a. acuminatus, 135 m for N. 
brunnea, 1200 m for T. v. velutinus and 240 m for U. 
despectus. Each landscape was a circle around the samp-
ling point with radius equal to the scale of  response to 
forest habitat (n = 69, 23 patches x 3 sampling points) 
for that species. Because species may respond to diffe-
rent aspects of  the landscape at different spatial scales 
(Bergin et al. 2000) we examined how the correlation 

between abundance of  U. despectus changed with scale 
using habitat as defined for both generalist and specia-
list beetles (see below). 

2.2 Movement Through the Landscape

We calculated the functional connectivity of  each land-
scape with Hanski’s connectivity measure, Si, (Hanski 
1994; Eq. 1), which has been shown to increase the ex-
planatory power of  effective distance studies (Verbey-
len et al. 2003). Patch i was a 30 m x 30 m cell around 
the sampling point. The Si measure down-weights ha-
bitat according to distance as a negative exponential 

Figure 2. The counties sampled in northern Indiana, USA. Points indicate the location of  a sampled forest 
patch. The total extent of  these counties was used as a boundary when extracting land cover values from 
the National Land Cover Dataset.  One county, Vermillion County, is in the neighbouring state of  Illinois.
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function scaled by the mean lifetime dispersal distance 
of  the organism. We do not know the lifetime dispersal 
distance for our species (or most insect species). How-
ever, the spatial scale at which species respond most 
strongly to the surrounding landscape has been linked 
to the foraging ability and perception of  the landscape 
of  several groups of  insects (Roland & Taylor 1997; 
Steffan-Dewenter et al. 2002). We therefore used the 
spatial scale of  response to scale the distance between 
patches. The distance term dij was the least-cost dis-
tance to the patch j (see below), and we assumed that 
the surrounding patches in the landscape were occu-
pied. 

                                           

where n is the number of  patches in the landscape; α 
is the inverse of  the spatial scale of  response of  the 
species; dij is the distance between patch i and patch j; 
Aj is the area of  patch j; and pi is the probability that 
the patch j is occupied.

For functional connectivity calculations, we extracted 
land cover values from the National Land Cover Da-
taset (Vogelmann et al. 2001) for 29 counties in nor-
thern Indiana and one county in Illinois (Fig. 2). We 
grouped these land cover values into broad categories 
of  forest (NLCD classes:  deciduous forest, evergreen 
forest, mixed forest), urban areas (NLCD classes:  low 
intensity residential, high intensity residential, com-
mercial/industrial/transportation), and agriculture 
(NLCD classes:  orchards/vineyards/other, pasture/
hay, row crops, small grains, fallow) areas which were 
reclassified to create a suite of  cost surfaces. Using a 
custom Python script and GIS software (Python Soft-
ware Foundation 2001, ESRI 2005), we calculated 
least-cost distances from every sampling point to every 
forest patch within the appropriately-scaled landscape, 
and areas of  each forest patch within the landscape. 
We then calculated the functional connectivity of  the 
landscape surrounding each point (n = 69) for each 
cost surface and the mean functional connectivity for a 
forest patch (n = 23). 

The first surface assumed all land cover types were 
equal (cost value = 1) before cost distances were cal-
culated. This is approximately equal to calculating the 
Euclidean distance between patches, and we hereafter 
refer to the functional connectivity of  a landscape cal-
culated with this cost surface as Si

Euc. For all additional 
surfaces, we varied the cost values for the three broad 
groups of  land cover: forest and non-forest, urban and 
non-urban, and agriculture and non-agriculture (Tab. 
2). We assessed one group at a time, including any in-
formation previously found to be important (after Ver-
beyelen et al. 2003). In lieu of  expert opinion on the 
relative resistances of  each land cover type to ceram-
bycids (Adriansen et al. 2003; Sutcliffe et al. 2003), we 
tested a range of  values in each broad group. We varied 
the cost values for each broad group by magnitudes 
of  10, ranging from 1 to 10000, and hereafter refer to 
the functional connectivity of  a landscape where cost 
values differed from each other as Si

Eff.

Cost distances between the sampling points and forest 
patches in the landscape are strongly correlated with 
Euclidean distances to the same patches. We perfor-
med linear regressions in SAS (PROC GLM; SAS In-
stitute Inc. 2003) for each cost surface where mean 
Si

Eff was the response variable and mean Si
Euc was the 

predictor (n = 23). We standardized both the resulting 
residuals and the mean Si

Euc values (PROC STDIZE, 
SAS Institute Inc. 2003), then used them as predictor 
variables in multiple multinomial regressions where the 
response variable was the mean presence of  the beet-
le in the landscape. Including the residuals allowed us 
to keep cost distance information while ensuring in-
dependence of  the predictor variables (Verbeylen et 
al. 2003) and examine the additional benefit of  using 
least cost paths over simple Euclidean distance for fly-
ing beetles. We performed the multiple multinomial re-
gressions in Statistica (Generalized Linear/Non-Linear 
Models Multiple Regression with Ordinal Multinomial 
Distribution and Logit Link, StatSoft Inc. 2007). For 
each cost surface, we assessed the fit of  the predictor 
variables to the data by ensuring that the scaled devi-
ance of  the test divided by the degrees of  freedom was 
not much greater than 1, and visually examining a plot 
of  the residuals plotted against predicted values (Maze-
rolle 2004; Statsoft Inc. 2007). 
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For each broad group of  land cover types, the best-
fitting surface was the one with the smallest value of  
negative two times the maximized log-likelihood. We 
used the log-likelihood value from the best-fitting sur-
face overall, i.e., across all groups, to calculate the se-
cond order Akaike Information Criterion for that sur-
face (AICc; Eq. 2). This is a modification of  the Akaike 
Information Criterion used when sample sizes are low 
(Hurvich & Tsai 1989). We also calculated AICc values 
for the Euclidean distance surface for each species, 
and compared these to the best-fitting surfaces overall 
using Akaike weights (wi; Eq. 3) and evidence ratios 
(Wagenmakers & Farrell 2004). In general, evidence 
ratios greater than 2.7 indicate that a model is a better 
fit than the one it is being compared to (Mazerolle 
2004). Because the AICc is not a hypothesis test we as-
sessed the overall significance of  the best-fitting cost 
surface and the Euclidean distance surface with like-
lihood ratios. 

where LL is the maximized log-likelihood, k is the 
number of  parameters being estimated and n is the 
sample size.

where Δi  is the difference between the AICc of  model 
i and the smallest possible AICc and R is the total num-
ber of  possible models.

Table 2. Values for the best-fitting cost surface(s) in each group. N.A., not applicable.
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We used the National Land Cover Dataset (Vogelmann 
et al. 2001) as the basis for reclassification of  surfaces 
for N. a. acuminatus, N. brunnea, and T. v. velutinus, but 
tested additional surfaces for the specialist species, U. 
despectus. For this beetle, we calculated the functional 
connectivity of  landscapes both with habitat defined 
as forest from the National Land Cover Dataset, and 
landscapes with habitat defined as areas conducive to 
the growth of  pignut hickory. The radius of  the land-
scapes around sampled points was determined sepa-
rately for the analyses using forest patches and pignut 
hickory patches as habitat. We tested 17 cost surfaces 
each for N. a. acuminatus, N. brunnea, and T. v. velutinus. 
One was the Euclidean distance surface, eight were 
used in the first group of  forest and non-forest, four 
were used in the second group that included urban ef-
fects, and four were used in the third group that inclu-
ded agricultural effects. We tested 34 cost surfaces for 
U. despectus, 17 with forest as larval habitat and 17 with 
pignut hickory habitat as larval habitat. We chose the 
best-fitting surface in a group by examining maximum 
likelihood values, and cost values for each group were 
informed by the previously best-fitting surface. If  se-
veral surfaces had the same maximum likelihood, we 
retained the lowest possible value when assigning costs 
in the next group.

2.3 Locating Host Tree Habitat

Pignut hickory, the larval host of  U. despectus, is an 
upland tree with a tendency to grow in well-drained 
soils (Deam 1931; Tirmenstein 1991; Farrer 1995) and 
along forest edges (Sork 1983). For the pignut hickory 
map, we included National Land Cover Data (NLCD; 
Vogelmann et al. 2001), floodplain data (FEMA 2006), 
soil data (Soil Survey Staff  2006), and location data for 
roads (INDOT 2006), railroads (NTAD 2003), and 
recreational hiking trails (IDNR 2002) in our analysis. 
Layers that were downloaded in vector format were 
converted to raster format and aligned with the NLCD. 
Linear features, such as roads and recreational trails, 
were buffered by appropriate distances before conver-
ting to raster (details in Foley 2008).

To determine which combination of  layers best predic-
ted the location of  pignut hickory, we used data from 
preexisting tree inventories in a classification tree ana-
lysis. Tree location inventory data were taken across 
northern Indiana in the summers of  2001-2003 (Swi-
hart et al. 2007). At each survey location (n = 934), all 
tree species present within 10 m of  a central point were 
recorded. Locations of  pignut hickory were tested for 
spatial autocorrelation in ArcGIS 9.1 (High/Low Clus-
tering (Getis-Ord General G) tool; ESRI 2005). We 
combined raster layers depicting data that may influ-
ence growth preference to assess which combination 
of  layers best predicted the location of  pignut hickory 
(Foley 2008). 

We created a classification tree (Partition procedure; 
SAS Institute Inc. 2003), where the response variable 
was presence of  pignut hickory at a point (1 = present, 
0 = not present), and the factors were the values of  
each GIS layer at the point (1 = preferred growth con-
dition present, 0 = preferred growth condition not 
present). This method of  analyzing categorical data is 
similar to a regression tree. We split the data into as 
many branches as possible then pruned these branches 
back. Splits were made one at a time, with more va-
riation in the dataset being explained as the number 
of  splits increased. We pruned the classification tree 
by plotting the total variance explained (R2) against the 
split number and visually determining where this ab-
ruptly leveled-off, similar to using a scree plot. 

Each branch in the resulting classification tree contai-
ned a combination of  growth conditions that could 
potentially be included in the pignut hickory map. If  
the cumulative probability of  predicting the locati-
on of  pignut hickory, calculated at the tip of  a given 
branch, either had the higher probability of  predicting 
the presence of  pignut hickory in a couplet, or had the 
higher sample size in a respective couplet plus a pro-
bability of  predicting the location of  the tree that was 
greater than 0.1, information gleaned from that branch 
was included in the larval habitat map. 
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3 Results

We caught all four of  our study species in several 
sampling sites within the human activity-domi-

nated landscapes of  Indiana (Tab. 3). Figure 3 depicts 
the change in maximum likelihood values for the dif-
ferent cost surfaces.  When habitat was simply deline-
ated as forest the overall best-fitting cost surfaces for 
all species were those that only distinguished between 
forest and non-forest (Tab. 4). For T. v. velutinus and U. 
despectus with forest as habitat, surfaces that included 
both urban and agricultural effects had the same ma-
ximum likelihood values as those that grouped forest 
and non-forest (Tab. 4). 

Pignut hickories were found at 89 locations in the tree 
inventory survey (n = 934). Since pignut hickory ab-
undance data were not found to be spatially autocor-

related (General G = 0.26, p > 0.10), data from all tree 
survey points were used to create the classification tree. 
The variance explained by the classification tree for are-
as likely to support pignut hickory levelled off  abruptly 
after split number five (Fig. 4). Branches of  the pruned 
tree (R2 = 0.085; Fig. 5) indicated that cells in the U. 
despectus larval habitat map should either be upland, fo-
rested areas with well-drained soil that were at least 90 
m from the forest edge (n = 22, probability of  correct-
ly predicting presence of  pignut hickory = 0.45); up-
land forest edge habitat that extended up to 90 m into 
the forest (n = 436, probability of  correctly predicting 
presence of  pignut hickory = 0.13); or upland field edge 
habitat that extended up to 60 m out of  the forest (n = 
224, probability of  correctly predicting presence of  pignut 
hickory = 0.08). Eighty-four of  89 locations inhabited by 
pignut hickories fell within the boundaries of  the U. des-
pectus larval habitat map (Fig. 6). The scale of  response to 
habitat changed for U. despectus depending on the definition 
of  habitat as forest or pignut hickory habitat. For U. despec-
tus with habitat redefined as areas favouring pignut hickory 

Table 3. Catch data for study species. Point-level prevalence refers to the number of  trap arrays at which the species 
was caught. Patch-level prevalence refers to the number of  forest patches within which the species was caught.
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Figure 3. Log likelihood results for all cost surfaces in all broad groups. Forest/non-forest surface numbers start with 2, 
urban effect surface numbers start with 3, and agriculture surface numbers start with 4. The best-fitting cost surface in each 
group had the smallest y-value (-2*Log(likelihood)). Generalist species fits are depicted in (a), while all surfaces tested for the 

specialist U. despectus, i.e., forest as habitat at 240 m and pignut hickory as habitat at 240 m, are depicted in (b).

Figure 4. The variance explained (R2) by the classification tree after each split in the data. The tree was pruned at the number 
of  splits where the graphs abruptly level off, indicated by an arrow (here, split number five).
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Figure 5. Final classification tree for locating areas likely to contain pignut hickory, the larval host tree of  Urographis 
despectus. Numbers indicate group size (top number) and the probability that pignut hickory was present. Terminal 
nodes with yellow text indicate conditions used to determine the larval habitat maps. White text indicates interme-

diate or terminal nodes that were not included in the final map. At each split the relative cross-sectional areas of  the 
tubes are proportional to the difference in the probabilities at the next nodes that pignut hickory was present.

Figure 6. Venn diagram to demonstrate the predictive ability of  the pignut hickory map. The large white rectangle symbo-
lizes all sampled locations (n = 934), the smaller grey rectangle symbolizes the number of  these locations that fell within 

the boundaries of  the final habitat maps (n = 682), and the dashed rectangle symbolizes the number of  sampled locations 
where pignut hickory was found (n = 89). The majority of  the locations where pignut hickories were found fall within the 

boundaries of  the final habitat map.
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growth, the best-fitting cost surface simply distinguished 
between pignut hickory habitat and non-pignut hickory 
habitat (Tab. 4). For all generalist species, the Euclidean di-
stance surfaces were a better fit to the data than the overall 
best-fitting surfaces (Tab. 5). Evidence ratios indicate that 
Euclidean distance surfaces are 2.8 times more likely to 
explain the distributions of  N. a. acuminatus and N. brunnea, 
respectively, than their best-fitting cost surfaces. The Euc-
lidean distance surface is also 4 times more likely to explain 
the distribution of  T. v. velutinus than the best-fitting cost 
surfaces for this species. Results for the specialist species 
differ depending on how habitat was defined. If  habitat 
was defined as forest, the Euclidean distance surface was 
4.5-5 times more likely to explain the distribution of  U. 

despectus than the best-fitting cost surface (Tab. 5). If  the 
definition of  habitat was changed to pignut hickory habi-
tat, the results reversed and the best-fitting cost surface was 
five times more likely to explain the species’ distribution 
than the Euclidean distance surface. Both the Euclidean 
surface and the best-fitting cost surface significantly exp-
lained the variation in the distribution of  N. brunnea (Tab. 
5). The best-fitting cost surface for U. despectus when pignut 
hickory habitat was included as a land cover type was also 
significant (Tab. 5). No other surfaces showed significance, 
though the Euclidean distance surfaces for both N. a. acu-
minatus and T. v. velutinus were close to significance (Tab. 
5).

Table 5. Goodness of  fit and model significance statistics for each species for the Euclidean distance surface (1) and 
the best-fitting cost surface(s). Significant log-likelihood ratios are marked with an asterisk (*).
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4 Discussion

For all three generalist species, connectivity calcu-
lated with Euclidean distance was a much better 

predictor of  presence in a landscape than the func-
tional connectivity calculated with effective (least cost 
path) distance. The only exception was the pole bo-
rer N. brunnea, where the results between the best cost 
surface and the Euclidean distance surface were very 
similar to each other (Tab. 5). In contrast, when habitat 
was defined as pignut hickory for U. despectus, the best 
predictor of  presence in a landscape was functional 
connectivity calculated with cost values of  1 for pignut 
hickory habitat and 1000 for all other types of  habitat. 
The difference was dramatic, with no other cost sur-
faces being even close to statistical significance. The 
area of  habitat patches, and thus the way they were 
defined, was more important to the functional con-
nectivity calculations than the distances between them 
because landscape sizes were small compared to inter-
patch distances. 

The U. despectus results could indicate that they perceive 
the non-habitat matrix as inhospitable in terms of  lack 
of  resources. It is likely that this specialist species was 
selected over time to detect good larval habitat, since 
in other cerambycid species egg size, number of  eggs 
and mating success (e.g., Hanks et al. 1996, 1998) are 
positively associated with adult size, and adult size is 
positively correlated with quality of  larval host habitat 
(Hanks 1995). For species with generalist larvae, N. a. 
acuminatus, N. brunnea, and T. v. velutinus, we failed to 
reject the null hypothesis that adult beetles perceive 
the landscape as a binary matrix of  forest and non-
forest. At the same time, the Euclidean distance cost 
surfaces either significantly explained the distribution 
of  each species (N. brunnea) or were quite close (N. a. 
acuminatus, T. v. velutinus). These results imply that fu-
ture studies of  cerambycid movement in Indiana need 
not measure anything more than Euclidean distance 
between habitat patches if  the species being investiga-
ted are polyphagous as larvae. 

Though the best cost surfaces did differ between spe-
cies, we were unable to reject the null hypotheses re-
lating cost values to the biology of  each organism. 
The best cost surfaces were statistically significant for 
both N. brunnea and U. despectus, but only for U. des-
pectus when habitat was redefined. The best cost sur-
face for N. brunnea had forest slightly more costly than 
non-forest (Tab. 5), which may indicate that there are 
more and better resources for this species in non-forest 
areas. Though this makes sense when considering its 
common name, the pole borer, evidence ratios indica-
te that the Euclidean distance surface, i.e., that which 
assigns the same cost value to every land cover type, 
is the most probable. This renders any interpretation 
of  cost values inappropriate. We must also avoid inter-
preting the best cost surface values for N. a. acuminatus 
and T. v. velutinus, respectively, as they were not good 
statistical fits to the distribution data and are less likely 
than their Euclidean distance counterparts.

The results outlined above are surprising, as they im-
ply that adult feeding habits do not affect movement 
through the landscape for these species. The limited di-
spersal of  adult N. brunnea indicates that adult feeding, 
if  it occurs, takes place on or near larval hosts, as noted 
previously (Solomon 1995). So long as the hosts, e.g., 
utility poles or logs, are abundant, the consequent lack 
of  prolonged movement in the landscape may mean 
that the composition of  the landscape has little impact 
on persistence of  the species if  they rarely encounter 
the larger landscape around them and they have no 
need to disperse to feed. Adult N. a. acuminatus may not 
feed, but they and other cerambycid species do detect 
volatiles emitted by larval hosts (Hanks 1999; Allison 
et al. 2004), and communicate via aggregation phero-
mones (Lacey et al. 2004). Adults of  the flower-feeding 
species, T. v. velutinus, may similarly be able to detect 
floral volatiles. If  they behave as other pollinators do, 
they respond to the composition of  a habitat patch rat-
her than its area (Hunter 2002). These chemicals may 
not have great impacts over the spatial scales that we 
examined, as wind and other environmental factors 
would lead to dissipation over large distances. Still, the 
existence of  these chemical signals indicates levels of  
communication that may not be reflected by our stu-
dy design. Insect species previously studied with cost 
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distances tend to either come into direct contact with 
their habitat through walking, e.g., ground beetles (Jopp 
& Reuter 2005), or be specialized to particular larval 
plants or adult feeding sites, e.g., butterflies (Sutcliffe 
et al. 2003). Those that walk can potentially perceive 
boundaries and decide which type of  habitat that they 
prefer (Collinge et al. 2002), while those that are highly 
specialized must have developed ways of  cueing into 
their habitat, much like the cerambycids studied here. 
Since trunk volatiles, leaf  volatiles, floral volatiles, phe-
romones and kairomones are airborne, any perceived 
boundaries between habitat types are probably not pu-
rely related to physical boundaries defined by the Nati-
onal Land Cover Dataset. While tracing the boundaries 
of  any type of  land cover in a GIS is possible, it may 
not be the most feasible option when operating over 
areas as large as those investigated here. Alternatively, 
we could have altered the functional connectivity cal-
culations by weighting habitat patches by not just area 
and distance, but also by quality (pj in Eq. 1). It was not 
logistically possible for us to assess the probability of  
occupation of  each patch in each landscape, so we as-
sumed that all patches contained equally suitable habi-
tat and set all pj  equal to 1. In reality, most cerambycids 
are able to distinguish the physiological state of  a tree 
(Linsley 1959; Solomon 1995; Hanks 1999); all patches 
do not have the same suitability and the beetles can 
detect this. More appropriate values of  pj  would weight 
each patch’s contribution to the functional connectivi-
ty calculation differently, and including these may help 
researchers elucidate how the beetles actually perceive 
the landscape. Assessing the probability of  occupation 
could be accomplished by ground surveys, or by exa-
mining aerial photos or remotely-sensed images (e.g., 
Jia et al. 2006). 

GIS surfaces that combine many aspects of  an 
organism’s ecology tend to be the best at explaining its 
distribution (Sutcliffe et al. 2003; Verbeylen et al. 2003; 
Stevens et al. 2006). Here, we begin to examine the eco-
logical factors that affect persistence of  four species 
of  flying beetle in a fragmented landscape. Our results 
support the idea that adult cerambycid movement in a 
landscape is shaped by location of  larval host habitat, 
but could be supplemented with further information 
about the quality of  that habitat. Our results also un-

derline the importance of  properly delineating habi-
tat when dealing with specialist species, even if  those 
species feed on plants that do not exist in well-defined 
monocultures. While human activities influence the lo-
cation and size of  habitats for all species, the patterns 
of  human activities in non-habitat areas may not play 
a large role in structuring movement of  some flying 
insects if  they have a wide niche breadth.
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