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Abstract

 
The relationships between patterns and processes lie at the core of  modern landscape ecology. These depen-
dences can be quantified by using indices related to the patch-corridor-matrix model. This model conceptualizes 
landscapes as planar mosaics consisting of  discrete patches. On the other hand, relief  variability is a key factor for 
many ecological processes, and therefore these processes can be better modeled by integrating information con-
cerning the third dimension of  landscapes. This can be done by generating a triangle mesh which approximates 
the original terrain. The aim of  this methodological paper is to introduce two new constructions of  triangulations 
which replace a digital elevation model. These approximation methods are compared with the method which was 
already used in the computation of  3D-landscape metrics (firstly for parameterized surfaces and secondly for two 
landscape mosaics). The statistical analysis shows that all three methods are of  almost equal sensitivity in reflecting 
the relationship between terrain ruggedness and the patches areas and perimeters. In particular, either of  the me-
thods can be used for approximating the real values of  these basic metrics. However, the two methods introduced 
in this paper have the advantage of  yielding continuous approximations of  the terrain, and this fact could be useful 
for further developments. 

Keywords 

patch-corridor-matrix model, landscape metrics, relief, 3D-analysis, triangulation 

M.-S. Stupariu,  I. Pătru-Stupariu & R. Cuculici 
Geometric approaches to computing 3D-landscape metrics

Landscape Online 24, 1-12. DOI:10.3097/LO.201024



Landscape OnlineStupariu et al. 

© 2010 IALE-D. All rights reserved. www.landscapeonline.de   ISSN 1865-1542 Page 2

Geometric approaches to 3D metrics 24 / 2010

1 Introduction 

It is a generally accepted fact that the study of  the in-
fluence of  spatial pattern on many processes that are 

ecologically important (Turner 1989) lies at the core of  
modern landscape ecology. The relationships between 
spatial patterns and ecological processes can be better 
understood by introducing indices which quantify the 
spatial heterogeneity (Turner 2005). The majority of  
these indices are related to the patch-corridor-matrix 
model, which conceptualizes landscapes as mosaics 
consisting of  discrete patches (Forman & Godron 
1986; Forman 1995; Turner et al. 2001). According 
to Forman & Godron (1986), any patch represents a 
non-linear surface area differing in appearance from its 
surroundings. More specifically, any patch is an area of  
relatively homogeneous environmental condition at a 
particular scale, while the patch boundaries represent 
abrupt discontinuity (Kotliar & Wiens 1990; Gustafson 
1998; McGarigal 2002). A lot of  landscape metrics were 
introduced, in order to quantify the composition and 
the spatial configuration of  a patch mosaic (see e.g. For-
man and Godron 1986; Gustafson 1998; Turner et al. 
2001; McGarigal 2002; Botequilha Leitão et al. 2006). 
The landscape metrics have become a standard tool in 
the analysis of  landscape pattern and ecological mode-
ling. Several software packages were developed for their 
computation, using either vector or raster data, for ex-
ample r.le (Baker & Cai, 1992), FRAGSTATS (McGari-
gal & Marks 1995 and McGarigal et al. 2002), LEAP II 
(Schnekenburger et al. 1997), V-LATE (Lang & Tiede 
2003).

Despite its universality and its wide applicability, sever-
al limitations of  the patch-corridor model were already 
pointed out in the literature, as for instance its disconti-
nuity and its planimetric character. Hence, although most 
ecological attributes are inherently continuous in their 
variation, at least at some scale, (Wiens, 1989), the patch-
corridor model does not accurately represent continuous 
spatial heterogeneity (McGarigal & Cushman 2005; Mc-

Garigal et al. 2009). As an alternative to the patch-corri-
dor model, McGarigal & Cushman (2005) proposed the 
‘gradient model’, based on continuity instead of  discrete 
spatial heterogeneity and McGarigal et al. (2009) intro-
duced the surface metrics for quantifying landscape gra-
dients. Another limitation of  the standard model is the 
fact that it is a two-dimensional one, ignoring the third 
dimension of  landscapes. Hence, the necessity to add 
topographic aspects into the two-dimensionality of  the 
patch-corridor concepts (Blaschke & Drăguţ 2003) or to 
include information related to 3D-features like surface 
roughness, landform or relief  variability (Hoechstetter 
et al. 2008) was pointed out.

Let us now have a look at the necessity of  accurately 
quantifying the third dimension of  landscapes for other 
sciences. Relief  variability is studied in the framework 
of  geomorphometry, which is defined as the science of  
quantitative land-surface analysis (Pike et al. 2009). The 
development of  geographic information systems made 
it possible to extract land-surface parameters and objects 
from digital elevation models and to use them for topo-
graphic quantification (Pike et al. 2009). Several topogra-
phic attributes (altitude, slope, aspect, profile curvature, 
contour curvature) are derived from the gridded matrix 
of  elevation values (Huggett 2007). An introduction to 
this topic and further references can be found, for in-
stance, in Pike (2000); Pike et al. (2009); Wilson & Gal-
lant (2000). Moreover, using object-based image analysis, 
Drăguţ and Blaschke (2006) developed a methodology 
for automated classification of  landform elements. 

The relief  variability and diversity are also key factors for 
many processes studied in hydrology, pedology or bio-
diversity. Hence, topography influences place-to-place 
variations in ecological factors, such as water availabi-
lity and exposure to radiant solar energy (Bailey 2009). 
The organic world also depends on the irregularity in 
land surfaces. For instance, surface heterogeneity can 
decisively control the nature of  vegetation and flora, 
and thereby the distribution of  animals and other biota 
(Kruckeberg 2002). The vegetation pattern can be mo-
deled by using digital terrain data (Davis & Goetz 1990) 
and indices that capture relationships between vegetati-
on pattern and topography were introduced by Dorner 
et al. (2002). Moreover, a 3D landscape metrics metho-
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dology to modeling forest structure was developed by 
Blaschke et al. (2004). On the other hand, terrain is an 
important feature of  the structural niche occupied by 
terrestrial species (Riley et al. 1999). Land surface rugge-
dness is a vital component of  habitat for many wildlife 
species (Beasom et al. 1983) and its quantification is a 
necessary tool for animal habitat analysis (Sappington et 
al. 2007). Many applications of  modern methodologies 
in wildlife conservation are described in the monograph 
Cushman & Huettmann (2010).

All these studies show the importance of  the ‘3D-issue’ 
in landscape ecology (Hoechstetter et al. 2008) and the 
necessity to develop adequate indices which capture ter-
rain characteristics, by adapting the standard patch-cor-
ridor-matrix model. The basic ingredient of  this two-di-
mensional model is the patch. In the raster format, any 
patch is a subset of  the plane consisting of  a union of  
squares (cells) satisfying certain properties. The triangu-
lation method developed by Jenness (2004) made it pos-
sible to adjust the areas and the perimeters of  the pat-
ches, taking into account the elevation of  the grid cells, 
which was one of  the categories described by Dorner et 
al. (2002). Moreover, using this method, Hoechstetter et 
al. (2008) showed that one can adjust the standard land-
scape metrics. Despite its usefulness for computation of  
standard landscape metrics, Jenness’s method (Jenness 
2004) presents some disadvantages, which are discussed 
in Section 2. Specifically, this model does not provide 
continuous objects and the length of  a common border 
of  two patches is not well defined, in the sense that it 
depends on the patch which is analyzed. 

The purpose of  this paper is to present two alternati-
ve methods of  approximating terrains and to compa-
re them with Jenness’s method. The main advantage 
of  these new triangulations of  a digital elevation mo-
del is the fact that they eliminate the two limitations of  
Jenness’s method mentioned above. In particular, they 
allow the replacement of  each patch with a continuous 
three-dimensional triangle mesh. Therefore, this const-
ruction also satisfies the requirement to develop models 
based on continuous rather than discrete spatial hetero-
geneity (McGarigal & Cushman 2005). Although such 
a triangle mesh-patch is not constant from the point of  
view of  the elevation, it still represents the abstractizati-

on of  an ecologically homogeneous tract of  land. Thus, 
it could be considered a land unit in the sense of  Zonne-
veld (1989) and it could be the basic ingredient of  a 3D 
patch-corridor-matrix model. 

2 Methods –  
Generating triangle mesh approximations 

The aim of  this section is to describe three alterna-
tive constructions of  triangle meshes which re-

place a digital elevation model and which represent a 
polyhedral approximation of  a terrain. We first recall 
Jenness’s method (Jenness 2004) and we then introdu-
ce two new triangulations of  a digital elevation model. 
These methods could be used in the quantification of  
the third dimension of  landscapes, particularly in the 
adaption of  landscape metrics. 

Consider a raster image in which each cell c has a par-
ticular value ec associated with it, which represents the 
elevation (in meters) of  the central point in that cell. 
The digital elevation model gives rise to a disconti-
nuous surface consisting of  squares (Figure 1).

Figure 1. Sample digital elevation model   
(figure drawn according to Jenness 2004).
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A first method for generating a triangle mesh which 
approximates the original surface (hereafter referred as 
‘Method J’ ) was proposed by Jenness (2004) and was 
already used by Hoechstetter et al. (2008) in order to 
adjust several landscape metrics (Figure 2a). Each cell c 
is replaced by eight triangles having as common vertex 
the center of  the square. The other vertices corres-
pond in the 2D-model to the vertices of  the square 
c, respectively to the midpoints of  its edges. Their 
elevations are induced by those of  the adjacent cells. 
In fact, each adjacent cell c’ induces a vertex v’ having 
the elevation ev‘=(ec+ec‘)/2. For these triangles one can 
compute, using standard formulae, the area and the pe-
rimeter. These values can be used in the adjustment of  
standard metrics.

In the sequel we describe two alternative approaches. 
The main point of  the construction is to associate an 
elevation to each node of  the grid, obtained as the ave-
rage value of  the elevations of  the adjacent cells. Thus, 
the elevation en of  a node n is given by the formula

(1)

where ec is the elevation of  a cell c and Nn is the num-
ber of  cells adjacent to n. Usually, a node is adjacent to 
four pixels, that is Nn = 4, but this formula also integ-
rates the case when the node is situated on the border 
of  the grid. This construction yields a continuous (but 
in general not smooth) approximation of  the initial 
surface, consisting of  skew quadrilaterals. There is a 
one-to-one correspondence between the nodes of  the 
original grid and the vertices of  these quadrilaterals: 
each 2D-node (xn,yn) is replaced by a 3D one, namely 

(xn, yn, en). The first alternative approach (Figure 2b), 
hereafter called ‘Method T2’, (Stupariu et al. 2009) con-
sists in replacing each skew quadrilateral, say ABCD, by 
a union of  two triangles. This is done by triangulating 
ABCD using the principle of  Delaunay TIN for planar 
point sets (see e.g. de Berg et al. 2000). Hence, between 
the two possible triangulations (ACB, ACD), respec-
tively (BDA, BDC), we choose the one that maximizes 
the minimum angle. Eventually, all these triangles yield 
a continuous triangle mesh which approximates the ori-
ginal terrain. The second alternative construction (Fi-
gure 2c), called hereafter ‘Method T8’, gives rise to a fan 
consisting of  eight triangles which replace each pixel. 
All these triangles have as common vertex the 3D-point 
(xc, yc, ec) corresponding to the center of  the pixel. The 
other vertices are the 3D-points (xn, yn, en) associated to 
the nodes of  the cell and the 3D-points associated to 
the midpoints of  the edges, whose elevations are again 
computed using formula (1). These triangles usually 
no longer give a triangulation of  the skew quadrilateral 
which replaces the cell. In both constructions, each 2D-
patch (a union of  squares) is replaced by a 3D-patch (a 
triangle mesh) and its border is replaced by a continuous 
union of  segments. Applying standard formulae from 
analytic geometry, one can easy compute for each 3D-
patch the area and the perimeter. Further, one can also 
deduce several other metrics which can be expressed as 
function of  these two basic landscape metrics. 

These two alternative models own many of  the advan-
tages of  Jenness’s triangulation: neighborhood analysis, 
fast processing speed, consistent and comparable out-
put, as well as some of  its limitations: less accurate than 
TIN-based calculations (Jenness 2004). 

Figure 2. Polyhedral approximations of  the original terrain. 
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We claim that an advantage of  Methods T2 and T8 is 
that they give rise to a continuous approximation of  the 
true surface (in fact of  any patch in the grid). By ap-
plying these methods, one can assign to each node a 
well-defined elevation and one can replace each edge 
with a line segment (Method T2), respectively with the 
union of  two line segments (Method T8). Let us notice 
that, by using Method J, one gets some ‘gaps’ in the 
triangle mesh around some nodes (see Figure 2a), that 
is the triangulation provided by Method J is, in general, 
a discontinuous one.

This discontinuity can be proved rigorously as follows. 
Let’s consider the grid in Figure 3a consisting of  nine 
pixels. We apply Method J to the cells of  this grid. 
When we analyze the pixel E, we compute the elevati-
on en=(eE+eA)/2 for node n, while when cell B is pro-
cessed, the same node will get the elevation given by 
the equality en=(eB+eD)/2. Usually, these values do not 
coincide and this shows that, in this model, the eleva-
tion of  a node is no longer well-defined. Thus, the tri-

angles which replace the corresponding pixels cannot 
be glued in order to get a continuous surface.

We also claim that Method J may sometimes induce 
inconsistencies in the computations of  perimeters 
(especially when the differences between the eleva-
tions of  the pixels are substantial). More precisely, the 
lengths of  the edges are no longer defined, but they 
depend on the patch which is processed. In order to 
better understand these statements we analyze an ex-
plicit example. For simplicity, we will again take the 
grid in Figure 3a, consisting of  9 cells. We assume that 
the length of  each square is equal to 10 and that the 
elevations are those given in Figure 3b. Suppose that 
the cells B and E (with elevations 134, respectively 
142) are patches and let us compute the length of  the 
common border of  these patches, by using Methods 
T8 and J. In model T8, we first have to compute the 
elevations of  nodes n and n’, which are the endpoints 
of  this border, and the elevation of  point m, which 
is the midpoint of  the line segment [BE]. One has  

Figure 3. Grid consisting of  nine cells and the corresponding elevations.
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Thus, in model T8, the common border of  the patches 
B and E is a union of  line segments and has the length 
l ≈ 10.1239. Let us now apply Method J. As stated 
above, in this case the nodes n and n’ no longer have 
a well-defined elevation, but their elevation depends 
on the pixel which is processed. Let us first analyze 
the pixel B with elevation 134. In this case, node n has 
the elevation en =

 (eB+eD) ⁄ 2 = 135 and node n’ has the 
elevation en‘ =

 (eB+eF) ⁄ 2 = 137.5 (the elevation of  m 
remains equal to 138). Hence, when pixel (patch) B is 
processed, the length of  the border shared with E is 
l1≈10.8559. On the other hand, when pixel E is pro-
cessed, the elevations of  the nodes n and n’ are equal 
to 140, respectively 140.5 and the length of  the border 
shared with B is l2 ≈ 10.9754. The values provided by 
Method J are definitely larger than those provided by 
Method T8. This difference arises because Method T8 
yields a ‘better’ averaging of  the elevations of  the no-
des n and n’ and the corresponding values are closer to 
the elevation of  m (see Figure 4). By applying Method 
J, both patches (B and E) will have a well defined pe-
rimeter, but the length of  the common border is not 
well defined, in the sense that it depends on the patch 
which is analyzed. Of  course, usually the intersection 
of  the borders of  two patches consists of  more than 
one such edge and such errors may cumulate or may 
annihilate each other, depending on the shape of  the 
terrain. However, from this point of  view, Method T8 
provides consistent lengths for the common borders 
of  patches, in the sense that they do not depend on the 

patch which is processed. Analogous statements hold 
for Method T2.

Another remark is that Methods T8 and J are ‘finer’ 
than the Method T2, since each cell is replaced by many 
triangles and one can hope to get a better approximati-
on of  the true area of  the surface.

3 Results and Discussion 

In this section we will apply and compare the me-
thods described above: firstly on regular surfaces, 

for which quantitative indicators such as area are easy 
to compute, and secondly on grids corresponding to 
real terrains. 

3.1 Approximation of  parameterized surfaces 

In order to better understand the behavior of  the three 
models, we tested them on several standard parame-
terized surfaces: a parabolic cylinder, a parabolic hy-
perboloid and a real quartic (Zhou & Liu (2004) used 
similar techniques in a different context). Although it 
is clear that the surfaces occurring in the real situations 
are more complicated than these ones, we can carry 
out a first comparison of  the methods described abo-

Quantitative indices… 
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parabolic cylinder:   �� �0,20� � �0,20� � ��,������, �� � ��, �, � ��

��
� ����, 

parabolic hyperboloid:   �� �0,20� � �0,20� � ��, ���, �� � ��, �, ��
��
�, 

quartic:   �� �0,20� � �0,20� � ��, ���, �� � ��, �, �
��
�� ��

��
� 2���� ��

��
� 2� � 2��. 

 

We then created a grid consisting of 100 cells, each cell having the length equal to 2. For the center 
of each cell, which is a point of the form �2� � �, 2� � ��,����, � � �,� ,�0, we computed the 
corresponding elevation, equal to ��2� � �, 2� � ��. To this raster we applied the three alternative 
methods described above, obtaining the corresponding areas. For the computations, we developed a 
C++ application built with the Microsoft Visual Studio (Microsoft 2008) environment. On the other 
hand, using the MATLAB package (MathWorks 2008), we computed the true area for each of these 
surfaces. The results are synthesized in Table 1. 

 

Table 1. Polyhedral approximations of parametrized surfaces: comparative results. 

 Parabolic cylinder Parabolic hyperboloid Quartic 

2D-area 400.00 400.00 400.00 

Method J 868.19 713.45 594.63 

Method T2 853.90 699.00 569.53 

Method T8 868.19 712.80 593.82 

True area 929.36 744.63 660.43 

 

The first conclusion is that all three methods are valid and, for all three surfaces considered, they 
provide better approximations of the true areas than the 2D-method. However, one should notice 
that Methods J and T8 seem to be more accurate than Method T2, providing values which are closer 
to the real area. 

3.2 Case studies 

We now apply these models of triangulation for two study areas situated in the Prahova Valley, in 
Romania. The first sample area is located in the sub-mountainous region of the valley, while the 
second one is situated in its mountainous sector. Ortophotoplans and topographic maps containing 

ve. Moreover, for these surfaces, the true area can be 
well approximated using numerical methods. We con-
sidered the following explicit parameterizations:

We then created a grid consisting of  100 cells, each 
cell having the length equal to 2. For the center of  
each cell, which is a point of  the form (2m - 1, 2n-1),  
m,n=1,…,10, we computed the corresponding elevati-

on, equal to f(2m - 1, 2n-1). To this raster we applied the 
three alternative methods described above, obtaining 
the corresponding areas. For the computations, we de-
veloped a C++ application built with the Microsoft Vi-
sual Studio (Microsoft 2008) environment. On the other 
hand, using the MATLAB package (MathWorks 2008), 
we computed the true area for each of  these surfaces. 
The results are synthesized in Table 1.
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The first conclusion is that all three methods are valid 
and, for all three surfaces considered, they provide 
better approximations of  the true areas than the 
2D-method. However, one should notice that Methods 
J and T8 seem to be more accurate than Method T2, 
providing values which are closer to the real area.

3.2 Case studies

We now apply these models of  triangulation for two 
study areas situated in the Prahova Valley, in Roma-
nia. The first sample area is located in the sub-moun-
tainous region of  the valley, while the second one is 
situated in its mountainous sector. Ortophotoplans 
and topographic maps containing contour lines at 
scale 1:5,000 were digitized and the vector files were 
transformed, using the ArcGIS 3D Analyst TIN Crea-
tion tools (ESRI 2008), into a TIN surface. Using the 
Spatial Analyst extension of  ArcGIS, a DEM (with a 
cell size of  5m) was created. The files were exported 

in ASCII format and the data were analyzed using a 
C++ application built with the Microsoft Visual Studio 
environment. 

In Table 2 we included the 2D-area, the surface area 
(computed with the Surface Analysis extension of   
ArcGIS), as well as the areas provided by the three al-
ternative triangulations of  the raster image. As expec-
ted, the differences between the 2D-area and the ap-
proximations of  the true 3D-area (quantified in Table 
2 by the ratios between the 3D-approximation and the 
2D-value) are greater in the case of  the mountainous 
landscape, where terrain roughness becomes more si-
gnificant. The Methods T8 and J again provide close 
results and these values are greater than the value ob-
tained applying Method T2. It is interesting to notice 
that the TIN area is closer to that provided by Method 
T2. However, it is difficult to evaluate which one of  
these values is closer to the true surface area of  the 
terrain.   

Table 1. Polyhedral approximations of  parametrized surfaces: comparative results.

Table 2. Area estimations and ratios between the 3D-approximation and the 2D-value in the case of  the two test land-
scapes (surface areas are expressed in m2).
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In order to better understand the behavior at patch 
level of  the alternative 3D-models, we conducted a 
comparative statistic analysis - similar to the one pre-
sented by Hoechstetter et al. (2006). We computed the 
minimum, mean and maximum values at patch level 
(see Table 3) in the case of  three landscape metrics: 
AREA, PERIM and SHAPE. For the latter one, 
we used the formula SHAPE = 0.25 * PERIM / 
sqrt(AREA). Comparing the results obtained for the 
two study areas, we conclude that, at least for these 
two examples, all three methods correctly reflect the 
relief  variability dependence of  AREA and PERIM, 
in the sense that the ‘discrepancies’ between the 3D-
values and the 2D-values are greater in the moun-
tainous area than in the sub-mountainous one.  The 

computations also show that SHAPE is less depen-
dent on this terrain complexity, fact already noticed by 
Hoechstetter et al. (2006). Another conclusion is that 
the ‘hierarchy’ of  the methods noticed at landscape 
level seems to remain true at patch level. Hence, the 
values for AREA provided by Methods T8 and J are 
close to each other and they are greater than the ones 
obtained using Method T2. In the case of  PERIM, the 
inequalities between the values provided by the three 
methods still remain true. One should notice that the 
mean and maximum values of  PERIM in the moun-
tainous region (see Table 3) confirm the existence of  
patches with great ‘discrepancy’ between the perime-
ters computed by using Method T8 and those obtai-
ned with Method J. These discrepancies show that for 

Table 3. Statistics for three basic metrics, computed for the two test landscape mosaics.
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terrains with an increased degree of  variability, where 
the differences between the elevations of  neighbor pi-
xels in a DEM are substantial, the values provided by 
T8 may be definitely lower than those provided by J 
(see the example and the comments in section 2). Ne-
vertheless, as we will see later, such discrepancies occur 
only for few patches. 

The inequalities between the values for AREA and 
PERIM provided by these methods (that is AREA2D 
< AREAT2 < AREAT8 < AREAJ and analogous for 
PERIM) are satisfied by the majority of  the patches 
(more than 95%). We computed, for any patch and for 
each metric, the ratio between the value corresponding 
to a certain method and the 2D-value. Then, for each 
metric and each method, we computed the arithmetic 
mean of  the ratios obtained for all patches (these ave-
rage values of  the ratios can also be found in Table 
3). It is no surprise that the inequalities above remain 
true. One should notice that the values provided by 
Methods T8 and J are close to each other, both for 
AREA and PERIM. In particular, this fact shows that, 
when using Methods T8 and J, substantial differences 
between perimeters occur only for few patches. For 
each method and for each of  the three metrics, the va-
lues of  the ratios are normally distributed, in the sense 
that less than 5% of  the values are outside the 95% 
confidence interval. We also notice that in the case of  
the mountainous region, for AREA there is a signi-
ficant difference between the ratios at the landscape 
level (Table 2) and the average values of  the ratios at 
patch level. This fact is explained by the existence of  
a huge compact patch (almost 50% of  the surface) for 
which the ratio between the 3D-values and the 2D one 
is about 1.11 and by the existence of  smaller patches, 
with ratios closer to one. If, instead of  the arithmetic 
mean, one computes a weighted mean (with the weight 
of  a patch given by its number of  cells), then one ob-
tains the values 1.099, 1.106 and 1.108 for methods 
T2, T8 and J, respectively. In particular, the analysis of  
these 3D-indices and their comparison brought additi-
onal information concerning the fragmentation degree 
of  the mosaic. 

4 Conclusion 

This study reveals the fact that all three methods 
analyzed above are acceptable and could be used to 

compute the area, perimeter and several derived lands-
cape metrics for patches of  a landscape mosaic situated 
in the three-dimensional space. However, at least two 
fundamental questions arise. Are there any significant 
qualitative differences between these three techniques? 
Which method better approximates the real values? 

The answer to the first question is affirmative. As shown 
above, Methods T2 and T8 eliminate two limitations of  
Method J: they provide continuous triangulations of  
the terrains and well-defined lengths for the common 
border of  adjacent land cover patches. Continuous tri-
angle meshes are widely used in visualization and com-
puter graphics (see e.g. Hege & Polthier 2003) and si-
milar techniques could be adapted in terrain modeling. 
On the other hand, patch edges play an important eco-
logical role in the movement of  plants, animals, people 
and nutrients across landscapes (Botequilha Leitão et 
al. 2006). The lengths of  the common edges of  pat-
ches are explicitly needed in the computation of  the 
landscape metrics which quantify the contrast between 
adjacent patches. Hence, methods T2 and T8 could be 
useful in applications dealing with phenomena or pro-
cesses related to patch edges and their functions. 

Let us now discuss the second question stated above, 
which is concerned with the quantitative aspect of  get-
ting better approximations of  the real values of  areas 
and perimeters. The results obtained for parameterized 
surfaces indicate a certain ‘hierarchy’ of  the three mo-
dels, showing that, at least for the examples conside-
red, Method J yields the best approximation of  the true 
areas. One can also notice that the values provided by 
Method T8 are close to those provided by Method J. 
Two problems still need to be analyzed, but they go 
beyond the scope of  this paper. Is the ‘hierarchy’ of  
these three models valid for any parameterized sur-
face? What happens with the approximations provided 
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by these methods when the length of  the cell goes to 
zero? One expects that all the methods provide valu-
es which converge to the true ones, but it is not clear 
which one of  them converges faster. On the other 
hand, the hierarchy of  the methods remained true for 
the two case studies considered (section 3.2). However, 
for real terrains it is impossible to indicate which one 
of  the techniques approximates the real values better. 
We can only claim that, in the examples considered in 
this paper, Methods J and T8 yield, with few excep-
tions, values which are close to each other. Corrobo-
rating this remark with the advantages of  Method T8 
described above, we may conclude that, in some pro-
blems, Method T8 could successfully replace Method J 
(from a computational point of  view, the correspon-
ding algorithms have the same complexity).  However, 
further studies and applications of  these methods are 
necessary in order to better understand the behavior, 
advantages and limitations of  these methods. 
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