Landscape Metrics Explain the Ecological Susceptibility of Terrestrial Ecosystems

Mustafa Nur Istanbuly

Department of Environmental Science Faculty of Natural Resources University of Tehran Chamran Blvd., Karaj, Iran. Email: istanbuly@ut.ac.ir

Mohammad Kaboli

Department of Environmental Science Faculty of Natural Resources University of Tehran Chamran Blvd., Karaj, Iran. Email: <u>mkaboli@ut.ac.ir</u>

Sara Ahmadi

Department of Environmental Science Faculty of Natural Resources University of Tehran Chamran Blvd., Karaj, Iran. Email: <u>ahmadi.sara@ut.ac.ir</u>

Guohang Tian

College of Landscape Architecture and Art Henan Agricultural University E-mail: <u>tgh@henau.edu.cn</u>

Magdalena Michalak

Department of Regional Economics and the Environment Faculty of Economics and Sociology University of Lodz Lodz, Poland Email: magdalena.michalak@uni.lodz.pl

Bahman Jabbarian Amiri (Corresponding Author)

Department of Regional Economics and the Environment Faculty of Economics and Sociology University of Lodz Lodz, Poland Email: bahman.amiri@uni.lodz.pl

Supplementary information (S).

1. Determination of Ecological Susceptibility

The object-oriented method of the determination of ecological susceptibility is mainly based on the principle of extreme values (Misra, 1991). According to the principle of extreme values, the closer a measure of a given ecological factor is to its critical values, the higher the ecological susceptibility (Figure S1). Consequently, the following steps are taken to determine the measure of ecological susceptibility:

1.1. Designing Conceptual Diagram

On the basis of the objective method of the determination of ecological susceptibility, ecological factors are firstly enlisted. The conceptual diagram of the ecosystem (Amiri, 2019) is then designed by the ecological factors based on ecological knowledge. Figure S2 shows the conceptual diagram of the ecosystem, which is to be analyzed for further steps in determining the measure of ecological susceptibility.

1.2. Conceptual Diagram Analysis

To analyze the conceptual diagram of the ecosystem, the interaction analysis method, which was introduced by Jorgensen and Bendoricchio (2001), is applied. Accordingly, the existence and the lack of existence of the relationship between the two ecological factors are assigned 1 and 0, respectively. The measures in the rows and those of the columns were summed, and the relative importance measure of a given ecological factor is then calculated by subtracting the sum of a given column from that of the corresponding row (Table S1). The absolute measure K_i is then considered as the measure of the relative significance of a given ecological factor.

1.3. Determining Ecological Susceptibility

The ecological maps (slope, geographical aspect, elevation, soil, vegetation, groundwater table depth, soil pH, and geology) are reclassified according to Tables S2, S3 and S4, aiming at presenting, to present the extent to which each of the ecological factors implies the ecological susceptibility.

Having intersected the reclassified ecological maps by the grid map of the study area, the measure of ecological susceptibility is then integrated by the enlisted ecological factors for each of the cells using Eq. S1 as follows:

$$ESI = \sum_{i=1}^{n-1} (K_i X_i) \tag{S1}$$

where, ESI is the ecological susceptibility index, K_i : is the value of ecological factor *i* th, and X_i stands for the measure of ecological susceptibility of the cell *i* th.

Exemplar 1:

Supposing a study unit has the following ecological feature:

Ecological Factor	Value	Limitation code	Importance
Geology	None- resistance	5	6
Aspect	West	2	2
Elevation	1283.29 m.s.l.	6	5
Slope	42.09 percent	7	4
Rain	500 mm	7	1
Temperature	9	6	4
Soil deep, and	40 cm	4	1
Vegetation landcover	17.16 percent	4	3

ESI = (5 * 6) + (2 * 2) + (6 * 5) + (7 * 4) + (7 * 1) + (6 * 4) + (4 * 1) + (4 * 3) = 139

2. Results of modeling

2.1. Mean landscape metrics-based models:

$$S_i = 103.473 - 0.303DF1_{para} + 0.211DF2_{para}$$
(S2)

$$S_i = -545.958 + 1037.458DF1_{frac} - 767.774CF1_{frac} + 346.877EF1_{frac}$$
(S3)

$$S_i = 273.757 + 100.326 \log R1_{rcc} + 192.815 \log A_{rcc} + 136.893 \log BU_{rcc}$$
(S4)

$$S_i = 83.309 + 104.295DF1_{contig} - 115.890DF2_{contig} - 101.589CF1_{contig} + 68.822R1_{contig}$$
(S5)

$$LogS_{i} = 1.796 + 1.061LogDF1_{shp} - 1.039LogCF1_{shp} + 0.612LogEF1_{shp} + 0.842LogOF1_{shp}$$
(S6)

2.2. Weighted average landscape metrics-based models:

$$S_i = -80.909 + 36.703 LogA_{para} + 48.103 LogBU_{para}$$
(S7)

$$S_i = 499.865 - 200.070BU_{frac} - 159.793A_{frac}$$
(S8)

$$Log S_i = 2.425 + 1.415 Log OF 1_{rcc} + 0.987 Log A_{rcc}$$
(S9)

$$S_i = 90.753 + 62.645 Log R1 - 93.749 Log BU_{contig}$$
(S10)

$$S_i = 161.538 - 7.755A_{shp} - 21.226CF1_{shp}$$
(S11)

2.3. Median landscape metrics-based models:

$$S_{i} = 128.584 - 79.400 Log DF1_{para} + 188.424 Log DF2_{para} -$$

$$244.609 Log OF1_{para} + 116.635 Log CF1_{para}$$
(S12)

 $S_i = -1905.395 - 803.618 CF1_{frac} + 1456.622 S_{frac} + 480.866 DF1_{frac} +$

$$527.542R1_{frac} + 322.194EF1_{frac}$$
(S13)

$$Log S_i = 1.791 + 0.5430F1_{rcc} - 0.196DF2_{rcc}$$
(S14)

$$S_i = 72.326 + 64.868DF1_{contig} - 91.686CF1_{contig} - 135.672DF2_{contig} + 215.1460F1_{contig}$$
(S15)

 $S_i = 97.351 + 164.099 Log DF1_{shp} - 407.997 Log CF1_{shp} + 280.870 Log A_{shp}$ (S16) where,

Log S_i : the ecological susceptibility measure for cell i

para: the (mean, weighted mean, and median) perimeter-area ratio of LULC i,

frac: the (mean, weighted mean, and median) fractal dimension index of LULCi,

rcc: the (mean, weighted mean, and median) related circumscribing circle index of LULCi,

contig: the (mean weighted mean, and median) of the contiguity index of LULCi,

shp: the (average, weighted average, and median) shape index for patches of LULCi,

DF1: closed deciduous broad-leaved forest,

DF2: open deciduous broad-leave forest,

CF1: closed mixed forest,

EF1: closed evergreen needle-leaved forest,

R1: high-density rangeland,

A: agriculture,

BU: build-up,

OF1: open mixed forest and

S: shrubland.

S. References

- Amiri BJ (2019) Environmental Impact Assessment, 2nd Edition. University Press, University of Tehran, 228 p.
- Amiri, B.J., Gao, J., Fohrer, N., Adamowski, J., Huang, J. (2019). Examining lag time using the landscape, pedoscape and lithoscape metrics of catchments, Ecological Indicators, Volume 105, Pages 36-46, ISSN 1470-160X, https://doi.org/10.1016/j.ecolind.2019.03.050.
- Jorgensen SE., Bendoricchio G. (2001). Ecological Modeling Fundamentals, 3rd edition, Elsevier Science, UK, Pp. 544.
- McGarigal, K., Marks, B.J. (1995). FRAGSTATS: Spatial Analysis Program for Quantifying Landscape Structure. USDA Forest Service General Technical Report PNW-GTR-351. <u>https://doi.org/10.2737/PNW-GTR-351</u>.
- Misra KC (1991) Manual of Plant Ecology, 3ed, illustrated Oxford & IBH Publishing Company Private, Limited, 1991, ISBN: 8120404033, 9788120404038, 506 pages.

Figure S1: Conceptual relationship between ecological susceptibility and ecological factor measures (Amiri, 2019)

Figure S2: Conceptual diagram of the ecological factors (Amiri, 2019)

Factors	Slope	Aspect	Elevation	Geology	Soil texture	Soil pH	Soil depth	Vegetation cover	Precipitation	Temperature	Groundwater depth	Groundwater quality	Sum	Absolute Importance value $K = \left(\sum_{i=13}^{1} X_i - \sum_{j=13}^{1} X_j\right)$
Slope	0				1			1	1		1	1	5	0-5
Aspect		0						1		1			2	0-2
High from sea level			0		1		1	1	1	1			5	0-5
Geology				0	1	1	1	1			1	1	6	0-6
Soil texture					0			1			1	1	3	0
Soil pH						0		1				1	2	-1
Soil depth							0	1					1	1
Vegetation cover								0	1	1	1	1	4	3
Precipitation									0		1		1	1
Temperature										0			0	4
Groundwater depth											0		0	4
Groundwater quality												0	0	5
Sum	0	0	0	0	3	1	2	7	2	4	5	5		

Table S1: The interaction matrix analysis of the conceptual diagram (Amiri, 2019)

Elevation (m.s.l.)	Slope (%)	Ecological Susceptibility code	Geographical aspect	Ecological Susceptibility code	Geology	Soil depth (cm)	Ecological Susceptibility code
0-100	0-2	1	Flat	1	very resistance	> 120	1
100-200	2-5	2	North	a 3 resistance		80- 120	2
200-400	5-8	3	East	3 un- resistance		50-80	3
400-600	8-12	4	South	2 susceptible		25-50	4
600-1200	12-15	5	West	2	very susceptible	10-25	5
1200- 1800	15-30	6					
1800- 2200	30-65	7					
>2200	> 65	8					

Table S2: Classification and ecological susceptibility coding of the ecological factors

Precipitation (mm/yr)	Temperature (C ^o)	Ecological susceptibility code	Vegetation cover (%)	Ecological susceptibility code
200-400	4-6.25	8	75-100	1
400-600	6.25-8.5	7	50-75	2
600-800	8.5-10.75	6	25-50	3
800-1000	10.75-13	5	0-25	4
1000-1200	13-15.25	4		
1200-1400	15.25-17.5	3		
1400-1600	17.5-19.75	2		
1600-1800	19.75-22	1		

Table S3: Classification and ecological susceptibility coding of the climatic factors and vegetation

Table S4: The importance value of the ecological factors for ecological susceptibility

Ecological Factor	Importance value
Bedrock	6
Elevation	5
Temperature	4
Slope	4
Vegetation cover	3
Aspect	2
Precipitation	1
Soil	1

Landscape Metric	Formula	Range	Remarks
Contiguity index	$contig = \frac{\left(\frac{\sum_{i}^{Z} c_{ijr}}{a_{j}}\right)}{\nu - 1}$ where C_{ijr} is the contiguity value for pixel r in patch ij, v is the sum of values in a 3-by-3 cell template, and a_{ij} is the area of patch ij in terms of the number of cells	$0 \le \operatorname{contig} \le 1$	The value of metric varies between 0 for a one-pixel patch and 1 for a connected patch (McGarigal and Marks, 1995)
Fractal dimension index	$frac = log\left(\frac{p}{0.5A}\right)$ where P is perimeter and A stands for area	$1 \leq \operatorname{frac} \leq 2$	The index ranges between 1 for a regular (square) patch and 2 for an irregular (convoluted) patch (Rutledge, 2003)
Perimeter-area ratio	$para = \frac{P_{ij}}{A_{ij}}$ where P is perimeter and A stands for area	para ≥ 0	The farther the ratio is from 1, the more the patch deviates from the isodiametric shape (Farina, 2006)
Related circumscribing circle	$rcc = 1 - \left(\frac{a_{ij}}{a_{ij}^s}\right)$ where a_{ij} is the area (m ²) of patch ij, and a_{ij}^s is the area in m ² of the smallest circumscribing circle around patch ij	$0 \le rcc \le 1$	It varies from 0 for a convoluted patch to 1 for an elongated patch (Rutledge, 2003)
Shape index	$shp = \frac{1}{N_i} \sum \frac{L_i}{4\sqrt{A_i}}$ where N_i stands for the number of patches of category i, L_i is the perimeter, and A_i is the area of each patch in a given category.	$1 \le shp \le \infty$	For a square-shaped patch, the value of the index is equal to 0, but for an irregular shape-patch, it is ∞ (Rutledge, 2003)

Table S5: The equation, range, and physical meaning of the structure-related landscape metrics (Amiri et al., 2019)

Type of model	Model No	Coefficients					Collinearity Statistics			
Type of model	Wodel No.	widder variable	В	Std. Error	Beta	r^2	t	p-value	Tolerance	VIF
		Cons.	103.473	29.071			3.559	0.001		
	2	$DF1_{para}$	-0.303	0.069	-0.555	0.436	-4.371	0.000	0.999	1.001
		DF2 _{para}	0.211	0.071	0.378		2.973	0.005	0.999	1.001
		Cons	-545.958	348.004			-1.569	0.126		
del		DF1 _{frac}	1037.45	205.649	0.614		5.045	0.000	0.963	1.039
no	3	$CF1_{frac}$	-767.774	214.588	-0.431	0.515	-3.578	0.001	0.983	1.017
dn		EF1 frag	346 877	168 554	0.251		2.058	0.047	0.958	1 044
Ise		Cons	273 757	46 200			5.925	0.000		
-p;		R1 _{mag}	100.326	28.982	0.576		3.462	0.003	0.979	1.021
ric	4	A	192.815	62.619	0.550	0.539	3 079	0.007	0.850	1 176
ıetı		BUrge	136.893	61.981	0.392		2.209	0.041	0.860	1.163
en		Cons	83.309	14.036			5.936	0.000		
ape		DF1 _{contia}	104 295	26 276	0 464		3 969	0.000	0.938	1.066
lsc	5	DF2	-115 890	33 170	-0.404	0 577	-3 494	0.001	0.959	1.043
anc	5	CF1	101 580	40.206	0.704	0.577	2 521	0.001	0.939	1.045
ո 1ն		D1	-101.389	40.290	-0.294		2.025	0.017	0.943	1.000
ear		K1 _{contig}	08.822	33.821	0.255		2.035	0.050	0.957	1.045
X		Cons	1.796	0.055	0.540		32.688	0.000	0.0.00	1.022
		DF 1 _{shp}	1.061	0.233	0.543		4.557	0.000	0.968	1.033
	6	$CF1_{shp}$	-1.039	0.378	-0.329	0.546	-2.750	0.010	0.962	1.040
		$EF1_{shp}$	0.612	0.286	0.256		2.141	0.040	0.963	1.038
		$OF1_{shp}$	0.842	0.413	0.243		2.036	0.050	0.965	1.036
		Cons.	-80.909	46.965			-1.723	0.094		
ic-	7	A_{para}	36.703	12.689	0.425	0.396	2.893	0.007	0.802	1.248
etr		BU_{para}	48.103	22.610	0.312		2.128	0.040	0.802	1.248
Ш		Cons.	499.865	67.993			7.352	0.000		
ipe	8	BUfrac	-200.070	87.561	-0.388	0.502	-2.285	0.028	0.495	2.022
sca	-	Afrag	-159 793	71 694	-0 378		-2 229	0.032	0 495	2 022
pu		Cons	2 425	0.136	0.570		17.847	0.000	0.195	2.022
e la	9	OF1	1 415	0.130	0 489	0.433	2 736	0.000	0.985	1.015
age		A	0.987	0.459	0.385	0.155	2.150	0.045	0.985	1.015
'er; Jas		Cons.	90.753	13.301	01000		6.823	0.000	01700	11010
h	10	R1 contia	62 645	14 600	0 648	0.590	4 291	0.000	1.000	1.000
ted		BII	-93 749	35 084	-0.403	0.570	-2 672	0.016	1.000	1.000
ght		Cons	161 528	13 108	0.105		12.072	0.000	1.000	1.000
'ei	11	Cons.	7 755	1 225	0.706	0 5 6 5	6 222	0.000	0.000	1 001
\$	11	A _{shp}	-1.155	1.223	-0.700	0.505	-0.555	0.000	0.999	1.001
		CF 1 _{shp}	-21.220	8.000	-0.274		-2.452	0.019	0.999	1.001
		Cons.	128.584	252.594	0.401		0.509	0.614	0.070	1.000
		DF1 _{para}	- /9.400	23.465	-0.401		-3.384	0.002	0.979	1.022
	12	DFZ _{para}	188.424	45.388	0.502	0.547	4.151	0.000	0.940	1.064
		$OF1_{para}$	-244.609	80.272	-0.366		-3.047	0.005	0.951	1.052
e		CF1 _{para}	116.635	49.817	0.279		2.341	0.025	0.966	1.036
ро		Cons.	-1905.395	546.501			-3.487	0.001		
н		CF1 _{frac}	-803.618	188.691	-0.457		-4.259	0.000	0.974	1.026
ed	12	S_{frac}	1456.622	374.745	0.420	0 (11	3.887	0.000	0.961	1.041
pas	15	DF1 _{frac}	480.866	147.785	0.359	0.041	3.254	0.003	0.920	1.087
C-		$R1_{frac}$	527.542	195.825	0.295		2.694	0.011	0.934	1.071
etri		$EF1_{frac}$	322.194	153.208	0.234		2.103	0.043	0.909	1.101
mé		Cons.	1.791	0.080			22.433	0.000		
pe	14	$0F1_{rcc}$	0.543	0.171	0.480	0.264	3.176	0.003	0.922	1.085
sca		$DF2_{rcc}$	-0.196	0.082	-0.362		-2.394	0.022	0.922	1.085
hds		Cons.	72.326	13.648			5.299	0.000		
la		DF1 _{contia}	64.868	18.017	0.411		3.600	0.001	0.974	1.027
an	15	CF1 _{contia}	-91.686	33,782	-0.316	0.581	-2,714	0.010	0.936	1.069
ibe		DF2 contin	-135 672	32,623	-0 492		-4 159	0.000	0.908	1 101
Ŵ		OF1	215 146	64 145	0 391		3 354	0.002	0.933	1.072
		Conc	07 251	1 247	0.371		2.554	0.002	0.755	1.072
		DE2	77.331	4.241	0 275		22.920	0.000	0.022	1.071
	16	CE1	104.099	30.204	0.575	0.475	2.910	0.000	0.935	1.071
		LF1 _{shp}	-407.997	113.219	-0.449		-3.604	0.001	0.995	1.005
		A _{shp}	280.870	134.625	0.268		2.086	0.045	0.935	1.070

Table S6: Statistics of the regression models for predicting the measures of ecological susceptibility using landscape structural metrics

Type of model	Model no.	RSS	Log (RSS/n)	2 K	K+1	n-K-1	AIC	Δj	EXP (-0.5 * Δj)	Wi
ased	2	1.4244	-1.4262	6	4	34	-47.4880	20.8974	2.90E-05	2.90E-05
etric-b	3	1.3910	-1.4365	8	5	33	-45.3737	23.0117	1.01E-05	1.01E-05
scape m model	4	30.3139	-0.0981	8	5	33	5.4827	73.8681	9.11E-17	9.11E-17
l landsc	5	95.2459	0.3991	10	6	32	27.0394	95.4248	1.90E-21	1.90E-21
Mean	6*	0.2935	-2.1121	10	6	32	-68.3854	0.0000	1.00E+00	1.00E+00
ape	7	0.4258	-1.9505	6	4	34	-67.4143	7.1991	2.73E-02	2.20E-02
landsca nodel	8	0.3313	-2.0596	6	4	34	-71.5583	3.0551	2.17E-01	1.74E-01
verage based	9	1.4031	-1.4327	6	4	34	-47.7361	26.8773	1.46E-06	1.17E-06
ghted a metric-	10	34.8924	-0.0371	6	4	34	5.2979	79.9113	4.44E-18	3.57E-18
Wei	11**	0.2753	-2.1400	6	4	34	-74.6134	0.0000	1.00E+00	8.04E-01
.5	12	1.3394	-1.4529	10	6	32	-43.3338	26.7425	1.56E-06	1.25E-06
e metr del	13	0.2823	-2.1290	12	7	31	-66.1930	3.8833	1.43E-01	1.15E-01
dian landscape n based model	14	0.4785	-1.8999	6	4	34	-65.4913	4.5850	1.01E-01	8.12E-02
	15***	0.2650	-2.1566	10	6	32	-70.0763	0.0000	1.00E+00	8.04E-01
Me	16	1.4639	-1.4143	8	5	33	-44.5306	25.5457	2.84E-06	2.28E-06

Table S7: Results of the inter-model comparison for the mean, weighted average, and median landscape metric-based models

* The most appropriate model for group 1 ** The most appropriate model for group 2 *** The most appropriate model for group 3

Analysis Statistics		Mean la	andscape n	netric-base	d model	Weighted average landsc	Median landscape metric-based model				
ata aa	Statistics	5.54	0714		0.54		054	DEI	0714	DEA	0.54
stage		DFI _{shp}	CFI _{shp}	EF1 _{shp}	OF1 _{shp}	A_{shp}	CF1 _{shp}	DF1 _{contig}	CF1 _{contig}	DF2 _{contig}	OF1 _{contig}
	Min.	1.0477	1.0000	1.0000	1.0476	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000
	Max.	2.0779	1.5533	1.5714	1.5587	9.8350	2.3154	0.6961	0.2778	0.2917	0.2847
A priori statistics ¹	Mean	1.3739	1.1352	1.1286	1.2412	4.0367	1.3462	0.3107	0.1225	0.1078	0.1629
	S.D.	0.2259	0.1150	0.1558	0.1118	2.4686	0.3492	0.1718	0.0935	0.0983	0.0493
	Variance	0.0510	0.0132	0.0243	0.0125	6.0939	0.1220	0.0295	0.0087	0.0097	0.0024
	Min.	0.5857	0.8334	0.9774	0.8604	1.2018	0.7882	-0.1423	-0.0312	-0.0326	-0.0326
	Max.	6.2583	1.6506	3.2429	1.7085	9.7074	7.9927	1.2057	0.2651	0.2835	0.2835
<i>Posterior</i> statistics ²	Mean	1.3735	1.1354	1.1294	1.2379	4.0557	1.3440	0.3108	0.1226	0.1066	0.1066
	S.D.	0.2460	0.1065	0.1760	0.1119	2.5012	0.4173	0.1763	0.0936	0.0980	0.0980
	Variance	0.0605	0.0113	0.0310	0.0125	6.2560	0.1741	0.0311	0.0088	0.0096	0.0096

Table S8: A priori and posterior statistics of the independent variables of the candidate models

¹ No. of observation=38. ² No. of observation=15,000.

	Posterior Statistics													
Statistics	A priori statistics		Mean landscape metrics-based model				Weighted r	nean landscape model	metrics-based	Median landscape metrics-based model				
			\mathbf{Y}_{sin}	n Change in targ	get variable for	SA	Ysim Change in target variable for SA			Ysim Change in target variable for SA				
	$Y_{obs.}{}^{1}$	$\mathbf{Y}_{sim}{}^2$	$Y_{\text{sim}} DF1_{\text{shp}}$	$Y_{sim} \vert CF1_{shp}$	$Y_{sim} EF1_{shp}$	$Y_{sim} OF1_{shp}$	$Y_{sim}{}^2 \\$	$Y_{\text{sim}} A_{\text{shp}}$	$Y_{\text{sim}} CF1_{\text{shp}}$	$Y_{sim}{}^2 \\$	$Y_{sim} DF1_{contig}$	$Y_{\text{sim}} CF1_{\text{contig}}$	$Y_{\text{sim}} DF2_{\text{contig}}$	$Y_{\text{sim}} OF1_{\text{contig}}$
Min.	46.0000	27.6574	40.1243	67.2021	90.7948	72.8338	-31.1516	57.6832	-39.4189	35.7142	72.2685	88.5849	77.8220	86.0609
Max.	147.0000	610.0575	495.4196	136.7039	189.1619	129.7619	135.1566	123.6436	113.5032	525.2236	159.7162	115.7552	120.7103	526.8301
Mean	101.6579	99.6678	99.2155	100.0519	98.9469	98.8811	101.5588	101.5119	101.7064	107.3213	101.6649	101.6537	101.8231	107.1539
S.D.	27.1017	24.8117	19.0106	9.6954	8.8584	7.5278	21.2864	19.3967	8.8570	26.0066	11.4392	8.5823	13.2962	17.2131
Variance	734.5014	615.6210	361.4023	94.0017	78.4713	56.6674	453.1099	376.2333	78.4461	676.3435	130.8548	73.6558	176.7882	296.2891

Table S9: A priori and posterior statistics of the Y variables of the candidate model.

¹ No. of observation=38. ² No. of observation=15,000.

Type	Analysis	Model	Statistical	Kolmogor	ov Smirnov	Statistical	Sample Size
Type	stage	variable	distribution	Statistics	P-value	parameters	Sample Size
						k = 0.48705	
	A prior		_			$\alpha = 16.003$	
	statistics	DF1 _{shp}	Burr	0.05589	0.99928	$\beta = 1.2385$	38
	statistics					y = 0	
_						$\gamma = 0$	
del		CE1	р <u>с</u>	0.00571	0.04460	u = 112.05	
40		CFI _{shp}	Pearson 5	0.09571	0.84462	$\beta = 126.95$	
V P						$\gamma = 0$	
Ise						$\alpha = 0$	
-p						$\beta = 0$	
uic.		EF1 _{shp}	Wakeby	0.161	0.25001	$\gamma = 0.13307$	
leti						$\delta = 0.12005$	
2						$\xi = 0.97739$	
ape						m = 123	
sci		OF1.	Erlang	0.06733	0.99072	$\beta = 0.01007$	
pu		Or Ishp	Eriung	0.00755	0.99072	$\gamma = 0$	
La						x = 0.53444	
an						$\gamma = -0.53444$	
Me		Y _{obs}	Johnson SB	0.06191	0.99671	0 - 0.7108	
-						$\lambda = 109.55$	
						$\xi = 32.205$	
	Posterior					$\alpha = 5.6691$	
	statistics	Y _{sim}	Log-Logistic (3P)	0.00852	0.2251	$\beta = 69.257$	15000
	Statistics					$\gamma = 26.552$	
						$\alpha = -35.719$	
be	Aprior					$\beta = 1.5001$	
sca	atotistica	tatistics A _{shp}	Wakeby	0.08257	0.93892	$\gamma = 36.413$	38
hds	statistics					$\delta = -1.1267$	
Ta Vo						$\xi = 1.2018$	
dN						k = 0.32446	
sra,		CF1 _{shp}	Gen. Logistic	0.09409	0.85846	$\sigma = 0.15977$	
-ba		sup				$\mu = 1.2522$	
d A ric						a = 168.9	
let						$\beta = 6.0194$	
ligi N	Posterior	Υ.	Wakeby	0.02218	7.5830E-	$\gamma = 60.957$	15000
We No	statistics	1 sim	wakeby	0.02210	7	$\delta = 1.1706$	15000
-						$\xi = 40.412$	
						$\zeta = 49.413$	
	A prior	DE1		0.1225	0.47.601	K = -0.0/9/4	20
_	statistics	DFIcontig	Gen. Extreme Value	0.1325	0.47691	$\sigma = 0.15034$	38
ode						$\mu = 0.23501$	
Ŭ						$\gamma = -0.0622$	
g		CE1	Johnson SB	0 13184	0 48323	$\delta = 0.49423$	
ase		CI I contig	Johnson DD	0.15104	0.40525	$\lambda = 0.29647$	
-p						$\xi = -0.03133$	
tric						$\gamma = 0.18583$	
Me		DE2	Labora on CD	0 10404	0.121	$\delta = 0.50329$	
e]		DF2 _{contig}	Johnson SB	0.18484	0.151	$\lambda = 0.31643$	
cal						$\xi = -0.03269$	
spi						$\alpha = 4.0584$	
Jan		OF1contig	Frechet	0.43892	4.5019E-	$\beta = 0.15424$	
n I		B			7	$\gamma = 0$	
dia						k = 1.4293	
Me	Posterior					a = 6.8421	
~	statistics	Y _{sim}	Burr	0.01078	0.06087	$\beta = 113.02$	15000
	stausues					p = 115.02	
		1				$\gamma = 0$	

Table S10: Results of statistical distribution fitting to the candidate models.

Figure S3: The predicted values to the observed measures of ecological susceptibility prediction models using different landscape metrics.

Figure S4: The scatter plots of the measures of independent variables versus the standardized values of the models' responses (a. mean model, b. weighted mean model, and c. median model).

Figure S5: Cumulative distribution function for the observed measures of ecological susceptibility (a), and the simulated measures of the mean (b), weighted average (c), and median (d) landscape metric-based models.