Landscape Online — transdisciplinary journal bridging science, policy and practice

Supported by the International Association for Landscape Ecology and its community

Landscape Online

(')PGII access peer re\'iewed

REVIEW

Landscape Online | Volume 100 | 2025 | Article 1141

Submitted: 31 March 2025 | Accepted in revised version: 25 October 2025| Published: 10 November 2025

Navigating the Nexus between Renewable Energy and
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Abstract

The dual crises of climate change and biodiversity loss demand integrated
approaches to align renewable energy expansion with ecological
conservation. Ground-mounted photovoltaic (PV) systems, a key
component of renewable energy strategies, require significant land use,
potentially impacting already vulnerable ecosystems. This study reviews
the scientific literature on the ecological effects of ground-mounted PV
systems under Central European conditions, with Austria as a case study.
Findings reveal scattered evidence of altered environmental conditions,
such as changesin microclimate and soil properties, and directimpacts on
biodiversity, including habitat loss, fragmentation, and species behaviour.
Current planning guidelines in Austria inconsistently address biodiversity
concerns, often neglecting habitats outside protected areas. Mitigation
measures, such as grazing, hedgerows, and structural elements, are
widely recommended but lack robust scientific validation. The study
highlights the urgent need for standardized Before-After-Control-Impact
(BACI) studies and adaptive monitoring to better understand biodiversity
impacts and improve mitigation. Strategic conservation planning at
the landscape level is essential to balance energy and ecological goals,
ensuring sustainable development. This research underscores the
importance of harmonizing renewable energy policies with biodiversity
conservation to address the intertwined climate and biodiversity crises
effectively.
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1 Introduction

The International Panel on Climate Change (IPCC),
together with the Intergovernmental Panel on Bio-
diversity and Ecosystem Services (IPBES), is pushing
for a comprehensive nexus approach to solve the
coupled environmental crises (Portner et al., 2023).
Important treaties in the field of climate protection,
such as the Paris Agreement (UNFCCC, 2015) or the
European Green Deal (European Commission, 2019),
are only loosely linked to treaties of biodiversity pro-
tection, such as the Kunming-Montreal Global Bio-
diversity Framework (CBD, 2022), or the European
Biodiversity Strategy (European Commission, 2020).
In addition, legally binding regulations were adopted
on the EU level such as the RED Ill Directive (Europe-
an Union, 2023) with the designation of zones for an
accelerated expansion of renewable energies and,
on the other hand, the European nature restoration
regulation (European Union, 2024), which aims to
preserve and restore degraded ecosystems. The co-
ordination or integration of these differing objec-
tives require appropriate governance mechanisms,
which anticipate and address the nexus between cli-
mate, biodiversity, and society (Pértner et al., 2023).

The necessary transition from fossil to renewable
energy sources calls for a very ambitious expansion
especially of wind and photovoltaics (PV), with the
latter in particular demanding a large amount of
space (Kiesecker et al., 2024), and thus inevitably
conflicting with other land uses such as agricultural
production, flood protection, nature conservation
and restoration, and human recreation. In addition,
the reasonable expansion of protected areas and an
effective conservation strategy outside these areas
also need space (Watson et al., 2020) for maintain-
ing connectivity and ecosystem functions (Boakes
et al., 2019; Portner et al., 2023). Several studies,
therefore, include protected areas as an exclusion
criterion in the decision models for the develop-
ment of renewable energy infrastructure and in par-
ticular for ground-mounted PV (e.g. Kiesecker et al.
2024, among others), while others consider this to
be insufficient (Pérez-Garcia et al., 2022), since mo-
bile species also spend large parts of their life cycle
outside protected areas. Furthermore, a large share
of biodiversity can also be found outside protected
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areas (Dudley et al., 2018; Loiseau et al., 2021), es-
pecially in complex landscapes (Estrada-Carmona
et al., 2022), which in turn are essential to main-
tain biodiversity levels of protected areas (Baldwin
& Beazley, 2019; Rada et al., 2019). Hence, there is
strong need to align the efforts of decarbonisation
and the expansion of renewable energy with the
protection and preservation of biodiversity locally
and on a global scale.

However, the effects of large-scale expansion
of renewable energy infrastructure, especially
ground-mounted PV, on biodiversity are largely
unknown and exert additional pressure on already
multi-impacted landscapes (Pirotta et al.,, 2022).
Very few publications before 2010, some of which
only available in grey literature, show complex in-
terrelationships (Jessel & Kuler, 2006; Herden et al.,
2009; Peschel, 2010; Tsoutsos et al., 2005). Lovich &
Ennen (2011) and Hernandez et al. (2014) formulat-
ed possible interactions between solar technologies
and ecological aspects in a conceptual way as well
as associated research gaps, and were, thus, able to
trigger a development in the scientific community
that has gained momentum in recent years (Lafitte
et al.,, 2023). However, the state of knowledge is
still very scattered, as reviews in recent years have
shown (Chock et al., 2021; Gémez-Catasus et al.,
2024; Lafitte et al., 2023; Nordberg & Schwarzkopf,
2023). Goémez-Catasus et al. (2024) summarized the
available literature, showing a broad range of con-
text-dependent settings, and thus making it difficult
to relate to specific environmental conditions, which
would be needed for identifying priority areas for
PV-installations and necessary mitigation (Hermoso
et al., 2023).

The rapid expansion of ground-mounted PV systems
has created a strong demand for reliable knowledge,
leading various authorities, institutions, and NGOs
to develop numerous guidelines and criteria to rec-
ommend environmentally friendly spatial planning
based on ecological and agroecological principles
(Blaydes et al., 2021).

Representative for Central European conditions, this
study focuses on Austria. In the case study the ten-
sion between the expansion of ground-mounted PV
and nature conservation is predominant and subject
to current political and societal debates. To achieve
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the national binding goal of being supplied with
100% renewable electricity in 2030, Austria aims
to increase renewable electricity production by 27
TWh (EAG, BGBI. | Nr. 150/2021). Of these 27 TWh,
11 TWh should come from PV systems and experts
suggest using open land, including agricultural areas,
for the expansion (Fechner, 2020). Ground-mounted
PV systems require 0.8-2.8 ha per generated GWh
of electricity (Umweltbundesamt, 2022). Assuming
two-thirds of the PV target for 2030 is met on built-
up structures, 3,000-10,400 hectares of additional
land is needed (Umweltbundesamt, 2022). Oth-
er studies indicate 7,000-8,000 hectares of land is
required to meet the 11 TWh target (PV Austria &
OIR, 2022). However, this expansion is only aimed
at electrical power generation. To achieve climate
neutrality (net zero emissions), which Austria aims
to reach by 2040, a much larger area would have to
be used for ground-mounted PV. This is obviously
in contrast with the current biodiversity situation in
Austria, where only 18% of the habitats and 14% of
the species of community interest are in favourable
conservation status (Umweltbundesamt, 2020). In
addition, 32% of native breeding birds, 27% of mam-
mals, 64% of amphibians and 60% of reptiles are
endangered (Zulka, 2005 & 2007) as are many bio-
tope types (Essl & Egger, 2010). As the installation
of new ground-mounted PV systems might possibly
impact already impaired ecosystems, immediate ev-
idence-based strategic recommendations for a na-
ture-compatible energy transition are needed.

The principle of the mitigation hierarchy (Jakle, 2012;
Kiesecker et al., 2010) stipulates at the top that valu-
able sites should be avoided regardless of their pro-
tection status. However, this requires knowledge of
the impact of a ground-mounted PV system on the
site and its habitat. The aim of the article is therefore
threefold: using Austria as a case study, we want (i)
to pool existing knowledge in the scientific literature
and apply it to variable Central European conditions,
which highly probable change considerably over the
next decades due to climate change with complex
changes in precipitation patterns (Formayer et al.
2025); (ii) to compare current planning standards
and guidelines in Austrian and neighbouring coun-
tries and regions with this knowledge and evaluate
whether conservation interests outside protected
areas are also considered, and (iii) to compare the
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reduction and mitigation measures in the guidelines
with the scientific recommendations. We focus on
ground-mounted PV without considering agrivolta-
ics (i.e. double use of land for both agricultural and
energy production). Agrivoltaic systems, especially
those installed on stilts, might affect local biodiversi-
ty less than ground-mounted systems, but biodiver-
sity impacts also still remain unclear (Schwarz & Ziv,
2025).

2 Materials and methods

2.1 Review of scientific literature

A systematic literature search was carried out via
Scopus for the period 2012 to 2023. The following
string was adapted from Lafitte et al. (2022) and con-
ducted in September 2023: TITLE-ABS-KEY ( ( ( pho-
tovoltaicS OR “solar panel$” OR “solar array$” OR
“solar developmentS” OR “solar power” OR “solar
park$” OR “solar installation$” OR “solar facilit*”
OR “solar plantS” OR “utility-scale solar energ*”
OR “utility scale solar energ*” OR biosolar) AND (
biodiversity OR fauna OR flora OR vegetation OR
diversity ))) AND ( LIMIT-TO ( SUBJAREA, “ENVI”)
OR LIMIT-TO ( SUBJAREA, “AGRI”)).

For the resulting 4.542 articles, a word count was
carried out to extract how often the search terms
in the search string appeared in the title, keywords
and abstracts. Entries with a word count of three or
more were processed further (375 articles). When
screening the abstracts, we excluded studies in de-
sert and tropical ecosystems, and studies dealing
with Concentrating Solar Power (Khan & Arsalan,
2016) or limited to measurements of site conditions.
77 papers could be related to biodiversity aspects of
interest in the Central European context of terres-
trial ecosystems. These were maintained and down-
loaded as full texts. In a second step, we adapted the
search string by incorporating more specific taxo-
nomic terms to look for additional articles not found
with the original search string: TITLE-ABS-KEY ( ( (
photovoltaicS OR “solar panel$S” OR “solar array$”
OR “solar development$S” OR “solar power” OR
“solar park$S” OR “solar installationS” OR “solar fa-
cilit*” OR “solar plantS” OR “utility-scale solar en-
erg*” OR “utility scale solar energ*” OR biosolar)
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AND ( ecolog* OR ecosystem™ OR wildlife OR “natu-
ral habitat*” OR vertebrate* OR mammal* OR bird*
OR reptile* OR amphibian* OR invertebrate* OR ar-
thropod* OR insect* OR arachnid* OR microbi* OR
bacteri* OR microorganism* OR fung™® OR restora-
tion OR ecovoltaics ))) AND ( LIMIT-TO ( SUBJAREA
, “ENVI” ) OR LIMIT-TO ( SUBJAREA , “AGRI” ) ).
This yielded ten additional articles. Finally, this bibli-
ography was imported into research rabbit (https://
researchrabbitapp.com/; Research Rabbit, s.a.), an
Al-based tool that finds, organizes, and understands
literature by visualizing a network of scientific arti-
cles and their connections, to ensure that all rele-
vant literature has been found. This double-check
resulted in adding another seven articles into the
database. Information of the finally retrieved 93
articles was categorized into: (i) article type (a re-
view, concept, descriptive, statistical, experimental,
spatial analysis), (ii) biogeographic location, (iii) bi-
odiversity indicator analysed (organism group, land
use or land cover), and (iv) extraction of the main
findings. We finally inductively categorized these to
six knowledge clusters of impacts on biodiversity de-
scribed in section 3.1. Subsequently, the focus in this
study was on empirical articles that dealt with direct
impacts on biodiversity and allowed drawing con-
clusions to the variable environmental conditions
comparable to Central Europe, which in turn could
be applied to our case study, Austria.

2.2 Site selection, planning guidelines, and
recommendations available for the case
study area

Planning regulations on ground-mounted PV of the
Austrian federal provinces as well as guidelines in
German language and recommendations from coun-
tries with comparable environmental conditions
were collected via web search. This resulted in 26
documents and grey literature, ranging from institu-
tional spatial planning guidelines to recommenda-
tions and position papers presented by NGO’s, um-
brella organizations and interest groups, which will
be summarized as “guidelines” from now on. They
were screened for all measures along the mitigation
hierarchy which were considered relevant for biodi-
versity, such as site selection and mitigation meas-
ures. These were extracted and grouped along the-
matic focuses respectively into main topics.

Landscape Online 100 (2025) 1141 | Page 4

Finally, a comparison was made between the sci-
entific findings of existing biodiversity effects and
mitigation efforts with the recommended ecological
measures in the guidelines.

3 Results

3.1 Review of scientific literature

Based on the bibliography extracted, research rabbit
identified a few key papers that are extensively refer-
enced like Hernandez et al. (2014), Armstrong et al.
(2016), and Blaydes et al. (2021), while other articles
show no reference to these, stand alone or only oc-
casionally refer to these central studies. A table of all
articles considered in this study is provided as Table
S1. The number of publications per year has recent-
ly increased significantly, ranging from only a single
one in 2012, to 25 articles in 2023, and in particular
the period from 2020 onwards shows the increased
interest of the scientific community in this topic. The
articles demonstrate a broad geographical coverage
including North America, Europe, Southern Africa,
Arabian countries and Central Asia. 29 deal with the
topic in a conceptual way or in the form of a review,
44 of the 93 papers use statistical methods for their
analyses, and 21 mainly spatial analyses and spatial
modelling. 28 of the spatial and statistical studies can
be related to current and expected in the future Cen-
tral European environmental conditions, because
they were carried out for example in the temperate
regions of North America, the continental climates
of Eastern Europe or the mediterranean conditions
of Southern France and Central Italy.

Based on the conceptual articles and reviews (i.e.
Chock et al., 2021; Dhar et al., 2020; Gomez-Catasus
et al.,, 2024; Hernandez et al., 2014; Lafitte et al.,
2023), two major groups of drivers can be summa-
rized: (i) planning and construction of the installa-
tions and (ii) operation of the installations (Figure
1). The first group primarily includes land conversion
and the disturbance of soil and vegetation (removal,
grading, erosion, sealing) caused by the installation
of panels, cables and the construction of roads. Dur-
ing operation of the plant, disturbance from vehi-
cles, noise and light as well as electromagnetic fields
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Figure 1. Categories of postulated drivers and impacts of ground-mounted PV plants summarized based on Hernandez et al.
(2014), Chock et al. (2021), Dhar et al. (2020), Lafitte et al. (2023), Gomez-Catasus et al. (2024).

induced by electricity, chemicals and the barrier ef-
fect of the fences are listed.

These two groups of drivers change the site condi-
tions by altering the microclimate in terms of light
conditions (Tanner et al., 2020; Zhang et al., 2023)
and thus also temperature (Armstrong et al., 2016;
Zhang et al., 2023), and humidity (Liu et al., 2019,
2022; Zhang et al., 2023), as well as the physical and
chemical properties of the soil (Moscatelli et al.,
2022; Zhang et al., 2023) exerting indirect impacts
on biodiversity. However, most of these studies have
been conducted in arid ecosystems (Gémez-Catasus
et al., 2024). Only a handful of studies are related
to temperate conditions: Armstrong et al. (2016)
observed in the UK a decreased temperature and
moisture under the panels and less diurnal variation
compared to the control sites, especially in sum-
mer. Under Mediterranean conditions, Lambert et
al. (2021) showed a decreased soil temperature by
10%, and soil CO2 effluxes by 50%, without any sig-
nificant changes in early successional plant commu-

nities in Southern France. In Central Italy, repeated
measurements over seven years revealed significant
reduction of water holding capacity and soil temper-
ature, while electrical conductivity (EC) and pH in-
creased, accompanied by a considerable reduction
of soil organic matter under the panels (Moscatelli et
al., 2022). Changes in temperature, water and light
regime as well as altered soil properties indirectly
impact plant growth and communities (Armstrong
et al., 2016; Zhang et al., 2023), with both winner
and loser species (Gomez-Catasus et al., 2024). Ac-
cording to the literature, the indirect effects of solar
panels by changing environmental site conditions
are evident (Table 1), whereas their quantification is
strongly locality-dependent.

The state of knowledge of direct effects, on the other
hand, is blurred and ambiguous (Table 1). Described
direct effects of ground-mounted PV systems were
categorized into five topics: (i) population composi-
tion and diversity, (ii) habitat loss, degradation and
fragmentation; (iii) impact on movement and behav-

Table 1. Number of articles dealing with indirect and direct (i.-v.) impacts on biodiversity; articles include statistical, spatial as
well as conceptual and review papers (number of statistical and spatial papers in brackets). Biodiversity level studied include

different biodiversity indicators as well as spatial models.

Impacts Number Biodiversity level studied Clarity of results

of articles
Alteration of environmental conditions 26 (18) site condition properties clear results of altered conditions
i. population composition & diversity 33 (26) plants, arthropods, bats, birds large variation in results

ii. habitat loss, degradation and fragmentation 25 (15)

protected areas, wilderness areas, land cover,

ambiguous results

modelled habitats

iii. impact on movement and behaviour 9(6)

(resident & migratory species)
iv. mortality & collisions 19 (9)

v. exotic plant invasions 5(1)

pollinators, butterflies, bats, ungulates

birds, bats, aquatic insects
non-native plants

ambiguous results

large variation in results
higher cover of neophytes
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iour of resident and migratory species; (iv) mortality
and collisions; and (v) exotic plant invasion.

33 studies investigate effects on population compo-
sition and diversity. The groups of organisms stud-
ied include plants, arthropods, bats and birds and
depending on the group studied, results varied be-
tween small to large impacts. With regard to habitat
loss, degradation and fragmentation, the 15 statis-
tical studies mainly use spatial models of habitats,
protected areas, wilderness areas or land cover in
general, with actual or possible PV locations. The
results are ambiguous, as some articles showed a
large spatial impact on important biodiversity are-
as (e.g. Rehbein et al., 2020), whereas other could
only find an minimal overlap with conservation are-
as (f.ex. Dunnett et al., 2022). Nine of 19 articles on
mortality and collision use statistical analysis to esti-
mate the collision risk for bats and birds, or whether
aquatic insects are attracted to the polarized light
of the panels. The results demonstrate large varia-
tion in this topic depending on the organism groups
studied ranging from small to large impacts. Nine pa-
pers describe possible influences on the movement
and behaviour of resident and migratory species, six
of them are based on statistical surveys of pollina-
tors, butterflies, bats and ungulates. Some of these
showed no to minor influence on the movement of
butterflies (Guiller et al., 2017) but for ungulates,
barrier effects could be described (Sawyer et al.,
2022). Five articles discuss the increased probability
of neophytes becoming established, although only
one study was able to demonstrate this with data.

3.2 Site selection, planning guidelines and
recommendations

An important point raised in the discussion of many
scientific studies is the previous use of the site: the
higher the naturalness of the ecosystem, the greater
the negative impact of a ground-mounted PV sys-
tem. This brings the question of site selection and
its criteria into focus. In our review sample, spatial
siting criteria relating to nature conservation assets
outside of legally established nature conservation
areas can hardly be found in scientific literature. A
recently published article (Fakharizadehshirazi &
Rosch, 2024) compares 31 international studies with
regard to siting criteria used and does not list any
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other parameters relevant to nature conservation.
Documents such as planning guidelines, recom-
mendations and other grey literature resulting from
the web search, on the other hand, mostly follow
the first two steps of the mitigation hierarchy. This
means firstly, to avoid (i.e., exclude areas of high
conservation values), and secondly, to reduce or mit-
igate negative impacts (define mitigation measures).

3.2.1 Defining criteria for the exclusion of areas of
high conservation value

In general, the different guidelines applicable in the
case study area of Austria define protected areas,
especially those with a high IUCN protection status,
as not suitable for ground-mounted PV systems.
Habitats of high conservation value that are out-
side protected areas, are not consistently treated in
the guidelines, five not even mentioning them. The
remaining guidelines listed in Table 2, are treating
criteria for nature conservation either in detail, or
only very superficially, usually in combination with
other criteria (forestry, flood protection, protection
of good agricultural soils). Many guidelines make a
distinction between exclusion zones (complete ban)
and reserved or conflict zones (on-site assessment
of suitability or not). On the other hand, areas that
are heavily impaired by anthropogenic factors, such
as industrial landscapes, landfills, areas that have
already been sealed, and the surroundings of large
infrastructures such as roads, railroads or airports,
are labelled as suitability zones. As spatial planning
in general, and the approval of ground-mounted PV
systems in particular are competences of the nine
different Austrian federal states, the inclusion of
nature conservation criteria differs enormously. In
addition, the guidelines available from NGO’s or in-
terest groups do not follow a common approach re-
garding nature conservation assets as well (see Table
2).

3.2.2 Definition of mitigation measures

Systematic scientific evaluation of ecological mit-
igation measures in ground-mounted PV installa-
tions were rarely available (Table S1). Five studies
evaluated methods to reduce the light polarization
of the panels and three studies investigated the ef-
fect of grazing as a management strategy for solar
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Table 2. List of areas of high conservation values as identified in different guidelines. The sign ‘-’ indicates that the respective
habitat is not considered in the guidelines, the letter ‘x’ indicates the definition as ‘conflict zone’ (on-site assessment of
suitability or not) and ‘o’ as ‘exclusion zone’ (complete ban). Only those documents that make a distinctive difference between
protected areas and other areas are integrated. Numbers [1] to [16] indicate the following guidelines: [1] OIR (2020); [2] Amt der
NO Landesregierung (2020); [3] Amt der NO Landesregierung (2022); [4] Amt der Steiermarkischen Landesregierung (2021); [5]
Amt der 00 Landesregierung (2022); [6] Amt der Kirnter Landesregierung (2021); [7] Wasser Tirol - Ressourcenmanagement-
GmbH (2022); [8] Land Salzburg (2016); [9] Birdlife Osterreich (2021); [10] im-plan-tat Raumplanungs-GmbH & Co KG (2022); [11]
WWF Osterreich (2021); [12] Naturfreunde Osterreich (2022); [13] Naturschutzbund Osterreich; [14] KNE (2021); [15] Hietel et

al. (2021); [16] LfU Bayern (2014).

Habitats of high conservation value (1) () (3) (4

(5)

(6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Red list of endangered biotope types X - - -

Extensively managed, species-rich
grassland / valuable grassland

Orchard meadows X - - -
Dry and semi-dry grassland
Slope and nutrient-poor meadows - - - -
Wetland meadows X - -
Valuable alpine grassland and meadows - - - -
Moors X - -
Designated wildlife corridors - -
Nutrient-poor embankments, verges - - - -
Field shrubs, solitary shrubs, solitary trees - - -
Fallow land X - - -
High-quality landscape structures X X - -
Renaturation areas - - - -

Growth and discovery sites of particularly
or strictly protected species / rare species

Reproduction and resting sites and
essential resting areas of strictly X - - -
protected species

Areas for the biotope network or
ecological corridors

Regional green zones -
Near-natural forests - - -
Green bridges - -
Natural springs - - -

Important bird areas grassland and field
breeding bird

Waste land - - - -

o o o

0 0 - 0 - 0 - - - - -
- - - X - - - - 0 0 X
0 - - X - - - - 0 - -
0 - - - 0 - 0 0 - - -
0 - - - 0 - - - - - -
0 - - - 0 - 0 - - - -
- - - - 0 - 0 - - - -
0 - - - 0 0 0 0 - - -
- 0 - X - X - - X - -
- - - X - - - - - - -
- - - X - - 0 - - - -
- - - - - 0 - 0 - - -
- - - - - 0 - - X - -
0 0 - X - 0 0 - 0 - -
0 0 - X 0 0 - - 0 0 -
- - - X - 0 X - 0 - 0
0 0 - - - - - - X - -
0 - - - - - - - - - -
- 0 - - - - - - - - -

parks. Modelling approaches and a literature review
were used in two papers to identify synergies with
ecosystem services such as pollination. Six stud-
ies analysed different management interventions
for ecological upgrading and restoration potential
of ground-mounted PV systems, such as the use of
bee-friendly seed mixtures, inoculation with mycor-
rhiza, or transfer of seed material. All these articles
discussed possible mitigation measures, while em-
phasizing the need for thorough experimental and
BACI studies to better understand how effectively
each measure reduces the panels’ impact on biodi-
versity.

The guidelines emphasize mitigation measures de-
spite the scarce scientific evidence. 17 of the 26
guidelines contain various specifications for impact
mitigation (Table 3). Some documents provide very
specific recommendations (for example Hietel et al.,
2021; Moorman et al., 2019), some remain more
superficial (BSW & NABU, 2021). Basically, the fol-
lowing thematic clusters can be found in the doc-
uments: Management approach (all documents)
containing recommendations concerning extensive
grazing or late mowing, the retention and creation
of new hedgerows (13 documents), to refrain from
fencing if possible (15 documents), park layout in-
dicating module arrangement such as spacing and
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Table 3. List of mitigation measures which are defined in the planning guidelines and recommendations. An ‘x’ indicates topics
of mitigation recommendations addressed in the respective document. Numbers [1] to [17] indicate guidelines: [1] Schlegel et
al. (2021); [2] Herden et al. (2009); [3] Montag et al. (2016); [4] Birdlife Austria (2021b); [5] BSW & NABU (2021); [6] Peschel et
al. (2019); [7] Birdlife Austria (2021a); [8] Demuth & Maach (2019); [9] KNE (2021); [10] LfU Bayern (2014); [11] PV Austria &

OIR (2022); [12] OIR (2020); [13] Hietel et al. (2021); [14] im-plan-tat Raumplanungs-GmbH & Co KG (2022); [15] Ministerium fiir
Umwelt, Klima und Energiewirtschaft Baden-Wiirttemberg (2019); [16] WWF Osterreich (2021); [17] Tiroler Umweltanwaltschaft
(2013).

Mitigation measure 1) (20 (3) (4 () () (7)) (8 (9) (10) (11) (12) (13) (14) (15) (16) (17)
Management approach X X X X X X X X X X X X X X X X X
Hedgerows X X X X X X X X X X X X X
Fencing X X X X X X X X X X X X X X X
Park layout X X X X X X X X X X X X X X X
Collision and light polarization X X X X X X

Disturbance X X X X X X X X X

Structural elements X X X X X X X X X X

,;-\nL;ttc;cr?atlhonous seeds / plant « « « « « « « « « « «

Chemicals X X X X X X X X X X X X X X
Monitoring X X X X X X X X X X X

cover (15 documents), collision and light polariza-  duced light conditions, shade-tolerant, nitrophilous
tion as a problem for birds, bats and aquatic insects  and annual plant species develop below the panels,
(6 documents), disturbance due to noise and light  while perennials and herbaceous plants colonise be-
during operation (9 documents), the creation of tween the panels (Armstrong et al., 2016; Uldrijan
structural elements like dead wood, rock piles, bare  etal., 2021, 2022, 2023). Overall, higher biodiversity
ground, wetland biotopes, etc. (11 documents), the  indices of the vegetation (Lambert et al., 2022, 2023;
use of autochthonous seeds and plant material (11  Vervloesem et al., 2022), and soil arthropods (Lam-
documents), to refrain from applying chemicals (14  bert et al., 2023) were also found. Not only a spa-
documents) and recommendations for consistent tial differentiation in the species communities, but

monitoring (11 documents). also a temporal one was described by Graham et al.
(2021), who found a seasonal dependency in floral
4 Discussion abundance as well as pollinator diversity. For bats,

species composition was found comparable to other
anthropogenic landscapes, like settlements and ar-
able land (Szabadi et al., 2023; Tinsley et al., 2023).
Kitazawa et al. (2019) concluded that wetlands and
Many statistical studies have investigated the popu-  fa|low land offer better conditions for birds than oth-
lation composition, the diversity of species and spe-  gr habitats, including ground-mounted PV systems.
cies communities, with some studies looking at the  jrg species that prefer herbaceous plants, nest on

impact of panels within installations (Impact) and  the ground, and open shrubs being those most likely
other articles looking at differences between PV sys- {5 pe found in PV systems (Zaplata, 2023).

tems and other land covers (Control-Impact). Only
a single study in California (Sinha et al., 2018) was
designed as a BACI analysis (Gomez-Catasus et al.
2024). The variability of the results presented in the
articles is large and is partly explained by different
local conditions such as habitat types, target species
composition or maintenance concepts (Blaydesetal.,
2022; Tsafack et al., 2022; Uldrijan et al., 2022, 2023;
Zhang et al., 2023). More specifically, due to the re-

4.1 Direct impact on biodiversity

Habitat loss, degradation and fragmentation at the
landscape level was largely investigated using spa-
tial analyses. Existing, planned or potential areas
of PV systems were overlaid in GIS with protected
areas (Dunnett et al.,, 2022; Rehbein et al., 2020;
Valera et al.,, 2022), wilderness areas (Aycrigg et
al., 2023), land cover (Hernandez et al., 2015; Kim
et al., 2021; McCoshum & Geber, 2020) or modeled
habitats (Evans et al., 2023; McCoshum & Geber,
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2020). While some studies have found a very clear
overlap with protected areas (Dunnett et al., 2022;
Rehbein et al., 2020; Valera et al., 2022), Evans et
al. (2023) see hardly any conversion of natural ar-
eas for PV systems and McCoshum & Geber (2020)
consider urbanization to be a greater problem. As
an interesting aspect Kim et al. (2021) also took the
size of the ground-mounted PV system into account.
Here, a greater loss of semi-natural areas due to me-
dium-sized ground-mounted PV (defined as 0.5-10
MW) is observed than from large ground-mounted
PV systems, which could accelerate the disappear-
ance of small remnants of natural areas.

The impact of habitat fragmentation depends on the
species groups studied and their mobility behaviour,
and whether the ground-mounted PV installations
affect movements and behaviour of resident and mi-
gratory species. According to Graham et al. (2021),
as well as Guiller et al. (2017), pollinators in general,
specifically highly mobile butterflies, could move re-
gardless of the ground-mounted PV systems’ pres-
ence, whereas butterflies with less dispersal activi-
ties were impeded in their interpatch movements.
For bats, there were no clear results; in the UK, a
negative effect was found on six out of eight species
due to the presence of PV installations, suggesting
that panels may cause some bats to alter their flight
routes (Tinsley et al. 2023). In Hungary, no differ-
ence in the bat community was observed between
agricultural landscape with and without PV systems,
but activity was lower in solar parks (Szabadi et al.,
2023). Sawyer et al. (2022) could show a clear effect
of the movement behaviour of ungulates in the US
rangelands, reducing their activity by 40% in a two
kilometres radius after establishing a solar park. At
landscape level, Levin et al. (2023) concluded that
land conversion due to agriculture and urban devel-
opment is a much more important driver for biodi-
versity loss than PV installations by overlaying po-
tential PV areas with wildlife corridors in the US.

As Gomez-Catasus et al. (2024) have pointed out, the
issue of mortality and collisions involving birds, bats
and aquatic insects is a frequently discussed impact
factor, but only scattered peer-reviewed literature
exists. Szaz et al. (2016) showed in their experiment
that different families of aquatic insects are signifi-
cantly differently attracted to shiny or matte PV pan-
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els, and the problem of polarized light pollution is
also dependent on weather conditions. Estimates of
bird deaths range from 37,800 to 138,600 (Walston
etal., 2016) and more than 260,000 birds and 11,000
bats (Smallwood, 2022) associated to this type of re-
newable energy infrastructure in the United States.
This substantial variation of estimates of mortality
rates in literature is due to methodological differenc-
es, and it is not clear whether these mortality rates
have a significant ecological impact, nor what role
ground-mounted PV installations play in this system.

The increased spread of invasive plant species is an-
other issue that can be exacerbated by soil changes
(Hernandez et al., 2014). However, this influence has
only been discussed marginally in other articles. Only
Lambert et al. (2023) found that coverage of non-na-
tive species was four times higher under the panels
than in-between them, and Uldrijan et al. (2023) ex-
pressed concerns in their discussion about their in-
creased invasion potential into ground-mounted PV
systems due to climate change.

Allin all, the results of these studies are inconsistent.
Lafitte et al. (2023) and Goémez-Catasus et al. (2024)
attribute this to the fact that the studies took place
in different climatic and landscape settings and in
differently designed facilities. Hence, the impor-
tance of BACI studies, standardized survey methods,
accurate descriptions of site characteristics and park
layouts are a prerequisite for scientific knowledge
gain.

4.2 Mitigation measures

Based on the results found in the literature, for some
groups of organisms such as bats, mobile butterflies
and ground-breeding/ open-shrub preferring bird
species, ground-mounted PV installations provide
a similar habitat as agricultural landscapes. Some
authors have also investigated ways of develop-
ing ground-mounted PV arrays as habitat islands in
agricultural landscapes (Nordberg & Schwarzkopf,
2023; Tolgyesi et al., 2023). In the only available BACI
study, targeted grazing measures in combination
with ground-mounted PV on former cereal crop-
land increased species diversity (Sinha et al., 2018).
Grazing is also recommended by Randle-Boggis et
al. (2020), to achieve a higher diversity of butterflies
and bees in combination with wildflower meadows
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and set-aside areas. An additional benefit of the
ecological enhancement of ground-mounted PV sys-
tems in agricultural landscapes also results from an
improved provision of ecosystem services, such as
pollination for adjacent fields (Blaydes et al., 2021;
Mishra et al., 2023), carbon storage, sediment re-
tention and water retention (Walston et al., 2021).
Nordberg & Schwarzkopf (2023) as well as Tolgyesi
et al. (2023) describe a possible design and associat-
ed research gaps for the concept of an “ecovoltaic”
(Tolgyesi et al., 2023) or “conservoltaic” (Nordberg
& Schwarzkopf, 2023) park as a basis for establishing
win-win-situation for biodiversity and energy gen-
eration. Still a point of criticism is the largely hypo-
thetical approach, as there are major gaps regarding
an effective implementation (Tolgyesi et al., 2023):
What is the optimal shape and size of a solar park?
What is the perfect panel spacing, panel width, pan-
el height? For which organism groups do solar parks
act as a barrier? Which seed mixtures and which
management fit the local conditions and can effec-
tively generate multiple ecosystem services for the
surrounding landscapes? Which factors can be spec-
ified generally, and which differ from site to site?

Despite these shortcomings, recommendations are
formulated in scientific literature as well as in the
guidelines. Concerning the management approach,
some articles emphasize that extensive grazing is
favoured to mowing from an ecological perspec-
tive; preferably with sheep and/or poultry. Mowing
is treated somewhat differently - from one to three
cuts per year, occasionally late mowing is noted, and
that it is important to remove the cut material, not
to mulch it. In the literature, a low intensity manage-
ment is stressed, especially late in the year (Blaydes
et al. 2021; Randle-Boggis et al. 2020).

Regarding hedgerows, there is a consensus about be-
ing made up of trees and shrubs that are appropriate
to the local site conditions, blend in with the land-
scape, and do not conflict with the target species. In
addition, planting or maintaining hedgerows at the
site boundary is also recommended by Blaydes et al.
(2021) and Randle-Boggis et al. (2020).

With regard to fencing, most guidelines prefer a de-
sign, which allows wildlife to pass underneath and
not act as a barrier - a 15-20 cm lower fence bottom
edge is mentioned, wherever fencing is unavoidable.
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Wildlife corridors for large mammals are also recom-
mended in the guidelines, whereas in the scientific
literature this issue is not specifically raised.

Concerning park layout, all guidelines call for a mod-
ule bottom edge of 80 cm to prevent overheating
of the area below. However, there are large differ-
ences in the degree of canopy cover (30% - 50%),
the distance between module rows (2.5 m — 6 m)
and the amount of open space (25% - 60% or ‘suffi-
cient’). All guidelines specify a parameter of 2% - 5%
sealing and, therefore, hardly see this as a significant
impact. Randle-Boggis et al. (2020) also recommend
the integration of wild flower meadows, buffer
zones, field margins and set-aside areas within the
ground mounted PV array.

Regarding mitigation measures for collision and light
polarization, there is no great awareness of these is-
sues in the guidelines, even though the problem is
highlighted by scientific literature. Black & Robert-
son (2020) determined gridding as a highly effective
mitigation measure. Different groups of aquatic in-
sects seem to react in different manners to matte
panels (i.e., panels less light-polarizing) (Szaz et al.,
2016). Szaz et al. (2016) conclude that the most ef-
fective conservation measure may be locating solar
panels away from riparian corridors that act as cen-
tres of aquatic insect activity and dispersal.

Disturbance due to noise and light is emphasized
during the construction of the facility, but the meas-
ures suggested remain very vague in the guidelines,
which could be illustrated with examples like ‘as lit-
tle as possible’, or ‘not during the breeding season’.

All guidelines also agree on the creation of structural
elements and recommend the introduction of dead
wood, rock piles, bare ground, wetland biotopes,
etc. Such recommendations can also be found in
peer-reviewed literature, even though this is large-
ly limited to pollinators. For example, Blaydes et al.
(2021) argue to “provide a range of nesting, breed-
ing and reproductive resources” and Randle-Boggis
et al. (2020) specifically focus on bee hives, which
are designed exclusively for honey bees and should
be viewed as livestock farming rather than a meas-
ure to promote biodiversity.

The use of autochthonous seeds / plant material is
stressed in all guidelines, and some point out that this
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is also a preventive management measure against
the emergence of neophytes. Although Blaydes et al.
(2021) argue for a diverse mix of flowering plant spe-
cies, the availability of regional seeds might be limit-
ed (Meyer et al., 2023). In another study, Lambert et
al. (2022) found that four years after seed transfer,
plant succession created vegetation similar to the
reference community outside the panel area. How-
ever, solar panels slowed the restoration process, as
ruderal species from the soil seed bank in the early
years hindered the growth of target species.

The use of chemicals is unanimously rejected in all
guidelines as well as in the scientific recommenda-
tions (Blaydes et al. 2021, Randle-Boggis et al. 2020).
Monitoring is generally desired, but only sporadic
references are made to standardized methods and
adaptive management in the guidelines. Scientific
reviews and conceptual articles on the other hand
stress the need for a standardized monitoring to gain
better knowledge about the multiple factors influ-
encing the development of the habitats and asso-
ciated fauna and flora in solar parks (e.g., Gdmez-
Catasus et al., 2024; Lafitte et al., 2023; Nordberg &
Schwarzkopf, 2023; Tolgyesi et al., 2023).

In the scientific literature, the importance of con-
nected habitats is also highlighted (Randle-Boggis et
al., 2020), especially for pollinators (Blaydes et al.,
2021; Dolezal et al., 2021). Here a range of recom-
mendations is provided, such as to ensure foraging
resources also for the late season, variation in vege-
tation structure, and thus creating different microcli-
matic regimes and a targeted management.

5 Conclusions

Research on the influence of ground-mounted PV
installations on biodiversity has increased in recent
years. However, our review exemplified that the
knowledge base is still very scattered. Authorities
and NGOs demand in a large number of guidelines
and recommendations, with good reasons, that
ground-mounted PV installations should be imple-
mented as biodiversity-friendly as possible. They
argue in line with the scientific literature, that pro-
tected areas alone do not sufficiently preserve biodi-
versity (Hallmann et al., 2017). Therefore, renewable
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energy planning must also take biodiversity param-
eters into account. However, the problem is that
these parameters must first be identified and quan-
tified, which means corresponding databases on the
occurrence of species and habitats that could be
affected by ground-mounted PV expansion must be
available. In addition, the need and possibilities of
BACI-studies for a better knowledge about enhanc-
ing mitigation strategies and promoting alternative
facility designs should be emphasized (Agha et al.
2020). As long as this data basis is not sufficiently
available, especially outside legally protected areas,
we suggest for the Austrian case study and other
comparable Central European environmental condi-
tions i) to strictly follow the mitigation hierarchy; ii)
to define criteria for excluding areas of high conser-
vation value; and iii) to integrate adaptive mitigation
measures with a strong monitoring focus.

Based on the Austrian case study, we see an urgent
need to mainstream integrated climate and nature
conservation policies, and planning procedures. The
expansion of ground-mounted PV systems is a critical
component of achieving climate and energy targets,
with significant land requirements projected for the
coming decades (Schmidt et al., 2025; Auer et al.,
2020; Jacobsen et al., 2017). Simultaneously, the Eu-
ropean Union has set ambitious goals to restore at
least 20% of its land and sea areas by 2030, and to
ensure the restoration of all ecosystems in need by
2050 (European Union, 2024). In Austria, however,
the legal framework for spatial and energy planning
is fragmented, as these responsibilities, along with
nature conservation and species protection, lie with-
in the nine federal states. This has resulted in incon-
sistent, uncoordinated, and often non-transparent
approaches to integrate nature conservation criteria
into planning of ground-mounted PV systems. A har-
monized approach for the whole case study region,
grounded in scientific evidence, is urgently needed
to ensure the consistent protection of habitats and
the implementation of site-specific mitigation mea-
sures independent from regional administrative bor-
ders. This requires comprehensive data for strategic
planning and standardized, scientifically supported
monitoring of new ground-mounted PV systems.
Such monitoring would not only facilitate the con-
tinuous evaluation and adaptation of maintenance
measures, but also contribute to the generation of
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scientific insights for Central European conditions, a
region currently underrepresented in the research
field. Furthermore, integrative planning approaches
that balance multiple objectives, could be adapted
to Austrian conditions, taking into account the coun-
try’s specific environmental characteristics.

Finally, based on our comprehensive review we have
five recommendations to be made. These critical
junctures rest on Moore-O’Leary et al. (2017) and
are complemented with additional insights from our
study: (1) Sustainable development in the field of
ground-mounted PV must strike a balance between
site selection, energy potential and ecological imple-
mentation. Systematic conservation planning shows
a viable way to weigh different interests and to find
a basis for further debates with stakeholders and in-
terested parties (Jung et al., 2024). (2) Species react
very differently to ground-mounted photovoltaic in-
stallations in the landscape and, depending on the
design of the facilities, there are winner and loser
species, which can also be deduced from the scien-
tific literature database in this article. (3) Much less
is known about the cumulative and large-scale ef-
fects in the landscape. Due to the complex interre-
lationships between the drivers of biodiversity loss,
the additional use of ground-mounted PV adds to
the combined effects of multiple stressors (Pirotta et
al., 2022). (4) Depending on the location and initial
situation, the impact of ground-mounted PV varies
greatly and requires adaptation of the design and
management of the plants, as well as regular eval-
uation of the mitigation strategies. (5) Long-term
consequences for ecosystems and biodiversity are
not known. Hence, according to the precautionary
principle, careful consideration is essential if both
climate and biodiversity targets are to be met. The
nexus of combating the climate crisis and the bio-
diversity crisis is complex and requires a joint effort
to mainstream biodiversity into climate and energy
policies and vice versa (Portner et al. 2023).
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