Impact of land use on aboveground carbon storage in a Tropical Montane Forest in Central Andes of Peru
DOI:
https://doi.org/10.3097/LO.2025.1137Keywords:
Montane Tropical Forest, aboveground carbon estimation, ecosystem services, land use changeAbstract
Tropical montane forests play a key role in carbon storage, but they face constant threats from land use change. However, the relations between land use change, vegetation structure and carbon stocks remain poorly understood. We aimed to assess aboveground carbon storage in four land use types within a montane forest in the Central Andes of Peru. We quantified carbon stocks from trees, crops, dead biomass, and herbaceous plants across 61 sample plots. We identified a gradient of carbon storage from highest to lowest across land uses: Old-growth Montane Forest (193.03 ± 68.2 t ha -1), Montane Forest in Regeneration (87.52 ± 50.29 t ha -1), Agroforestry (48.67 ± 24.05 t ha -1), and Croplands (12.46 ± 9.75 t ha -1). Vegetation structure variables (tree height, DBH, basal area, and tree density, canopy cover) showed a significant positive correlation with aboveground carbon stocks (r2 ranging from 0.63 to 0.91). In contrast, soil physical properties (textural class (% sand, silt, and clay) and soil bulk density) did not correlate with aboveground carbon stocks. Our estimations indicate that trees are a great carbon pool and the presence of trees with DBH ≥ 30 often indicates conservation status. This study proves that there is a loss of carbon storage and vegetation structural characteristics as land use intensifies. Restoration of degraded forests and adoption of an agroforestry approach offer promising alternatives to preserve ecosystem functions and mitigate climate change.
References
Anton, D. & Reynel, C. (2004). Relictos de Bosques de Excepcional Diversidad en los Andres Centrales del Perú (1st Ed.). Herbario de la Facultad de Ciencias Forestales. Universidad Nacional Agraria La Molina. https://www.aprodes.org/pdf/relictos.pdf
Bax, V. & Francesconi, W. (2018). Environmental predictors of forest change: an analysis of natural predisposition to deforestation in the tropical Andes region, Peru. Applied Geography. 91, 99–110. https://doi.org/10.1016/j.apgeog.2018.01.002.
Berenguer, E., Ferreira, J., Gardner, T., Oliveira, L., Barbosa, P., Cerri, C., Durigan M., Cosme de Oliveira, R. Guimaraes, M., Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology 20(12), 3713–3726, https://doi.org/10.1111/gcb.12627
Brown S. (1997) Estimating biomass and biomass change of tropical forests: A Primer. Food and Agriculture Organization. http://www.fao.org/docrep/w4095e/w4095e00.HTM
Bruijnzeel L., Mulligan, M., & Scatena, F. (2011). Hydrometerology of tropical montane cloud forest: emerging patterns. Hydrological Processes, 25(3), 465-498. https://doi.org/10.1002/hyp.7974
Bush, M., Hanselman, J., & Hooghiemstra, H. (2007). Andean montane forests and climate change. Tropical Rainforest Responses to Climatic Change. Springer Praxis Books. https://doi.org/10.1007/978-3-540-48842-2_2
Castilho, C., Magnusson, W., Araújo, R., Luizao, R., Luizao, F., Lima, A., Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management, 24(1-3), 85-96. https://doi.org/10.1016/j.foreco.2006.06.024
Cayuela, L., Benayas, J. & Echevarría, C. (2006). Clearance and fragmentation of tropical montane forests in the Highlands of Chiapas, Mexico (1975-2000). Forest Ecology and Management, 223(1-3), 208-218. https://doi.org/10.1016/j.foreco.2006.01.047
Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J., Nelson, B., Ogawa, Puig, H., Riéra, N., Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. doi: 10.1007/s00442-005-0100-x
Chave, J., Muller, H., Baker, T., Easdale, T., Steege, H. and Webb, C. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16(6), 2356-2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
Chao, K. and Phillips, O. (2005). Field manual for censuses on the type of tree mortality, Project; PAN AMAZONIA, Sixth Framework Programme (2002-2006). https://rainfor.org/wp-content/uploads/sites/129/2022/06/ModeOfDeath_english1.pdf
Cuellar, J. & Salazar, E. (2016). Dinámica del carbono almacenado en los diferentes sistemas de uso de la tierra en el Perú (1st ed.). Instituto Nacional de Innovación Agraría. https://repositorio.inia.gob.pe/items/2794d2ec-2df4-4010-85e2-14b4b279197d
Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang. (2007). Couplings Between Changes in the Climate System and Biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter7-1.pdf
Denning, A. (2018). Combustion to Concentration to Warming: What Do Climate Targets Mean for Emissions? Climate Change and the Global Carbon Cycle. Encyclopedia of the Anthropocene, 1, 443-453. https://doi.org/10.1016/B978-0-12-809665-9.09743-3
De Beenhouwer, M., Aerts, R., Honnay, O. (2013). A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems and Environment, 175, 1-7. http://dx.doi.org/10.1016/j.agee.2013.05.003.
Ehrenbergerová, L., Cienciala, E., Kucera, A., Guy, L., Habrová, H. (2015). Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agroforestry Systems, 90, 433-445. https://doi.org/10.1007/s10457-015-9865-z
Fadrique, B., Báez, S., Duque, A., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W., Malhi, Y., Young, K., Cuesta, F., Homeier, J., Peralvo, M., Pinto, E., Jadan, O., Aguirre, N., Aguirre, Z., and Feeley, K. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564, 207-212. https://doi.org/10.1038/s41586-018-0715-9
Food and Agriculture Organization. (2015). Testing field methods for assessing the forest protective function for soil and water. Forest Resources Assessment Working Paper No. 185. http://www.fao.org/documents/card/es/c/9f08bf8f-27f5-4207-bb58-b6a08948b4d4/
Gibbon, A., Silman, M., Malhi, Y., Fisher, J., Meir, P., Zimmermann, M., Dargie, G., Farfan, W., & Garcia, K. (2010). Ecosystem Carbon Storage Across the Grassland–Forest Transition in the High Andes of Manu National Park, Peru. Ecosystems, 13, 1097-1111. https://doi.org/10.1007/s10021-010-9376-8
Gilroy, J., Woodcock, P., Edwards, F., Wheeler, C., Medina, C., Haugaasen, T., Edwards, D., (2014). Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes. Global Change Biology, 20(7), 2162-2172. https://doi.org/10.1111/gcb.12482
Cécile A.J. Girardin, William Farfan-Rios, Karina Garcia, Keneth J. Feeley, Peter M. Jørgensen, Alejandro Araujo Murakami, Leslie Cayola Pérez, Renate Seidel, Narel Paniagua, Alfredo F. Fuentes Claros, Carla Maldonado, Miles Silman, Norma Salinas, Carlos Reynel, David A. Neill, Martha Serrano, Carlos J. Caballero, María de los Angeles La Torre Cuadros, Maria J. Macía, Timothy J. Killeen & Yadvinder Malhi. (2013). Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects, Plant Ecology & Diversity, 7(1-2), 161-171. https://doi.org/10.1080/17550874.2013.820806
Global Forest Watch (April 2021). Maps and statistics of tree cover in a given area. https://www.globalforestwatch.org/map/
Goslee, K., Walker, S., Grais, A., Murray, L., Casarim, F., and Brown S. (2018). Leaf technical guidance series for the development of forest carbon monitoring system for REDD+. Winrock International. https://winrock.org/wp-content/uploads/2018/08/Winrock-Guidance-on-calculating-carbon-stocks-1.pdf
Häger, A. and Avalos, G. (2017). Do functional diversity and trait dominance determine carbon storage in an altered tropical landscape? Oecologia, 184, 569-581. https://doi.org/10.1007/s00442-017-3880-x
Huaraca Huasco, W., Girardin, C.A.J., Doughty, C.E., et al. 2014. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology & Diverssity 7(1-2), 125–142. https://doi.org/10.1080/17550874.2013.819042
Jia, G., Shevliakova, E., Artaxo, P., De Noblet-Ducoudré, N., Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R., & Verchot, L. (2019). Land–climate interactions. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (In press). Intergovernmental Panel on Climate Change. https://www.ipcc.ch/srccl/chapter/chapter-2/
Lapeyre, T., Alegre, J, & Arévalo, L. (2004). Determinación de las reservas de carbono de la biomasa aérea en diferentes sistemas de uso de la tierra en San Martín, Perú. Ecología Aplicada, 3 (1-2), 35-44. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162004000100006
La Torre, M., Herrando, S. and Young, K. (2007). Diversity and structural patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. Biodiversity Conservation, 16, 2965-2988. https://doi.org/10.1007/s10531-007-9155-9
Lucich, I., Villena, M., Quinteros, M. (2015). Transportation costs, agricultural expansion and tropical deforestation: Theory and evidence from Peru. Agricultural Economics, 42(2), 153-169. http://dx.doi.org/10.4067/S0718-16202015000200003
Martínez M., Pérez, O., Vázquez, G., Castillo G., García, J., Mehltreter, K., Equihua, K., y Landgrave R. (2009). Effects of land use change on biodiversity and ecosystem services in tropical montane cloud forests of Mexico. Forest Ecology and Management, 258(9), 1856-1863. https://doi.org/10.1016/j.foreco.2009.02.023
Ministerio del Ambiente (2019). Mapa Nacional de Ecosistemas del Perú (1st ed.). https://sinia.minam.gob.pe/sites/default/files/sinia/archivos/public/docs/memoria_mapa_ecosistemas.pdf
Ministerio del Ambiente (2020). Monitoreando la pérdida de Bosques Húmedos Amazónicos en 2019. Programa Nacional de Conservación de Bosques para la Mitigación del Cambio Climático. https://geobosques.minam.gob.pe/geobosque/descargas_geobosque/perdida/documentos/Reporte_de_deforestacion_bosques_amazonicos_2019.pdf?Mon%20Jul%2012%202021%2014:18:49%20GMT-0500%20(hora%20est%C3%A1ndar%20de%20Per%C3%BA)
Muhati, G., Olago, D. and Olaka, L. (2018) Quantification of carbon stocks in Mount Marsabit Forest Reserve, a sub-humid montane forest in northern Kenya under anthropogenic disturbance. Global Ecology and Conservation, 14. https://doi.org/10.1016/j.gecco.2018.e00383
Myers, N., Mittermeier, R., Mittermeier, C., Fonseca, G. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501
Noormets, A., Epron, D., Domec, J., McNulty, S., Fox, T., Sun, G., King, J. (2015) Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124-140. https://doi.org/10.1016/j.foreco.2015.05.019
RAINFOR (2016). Field Manual for the Establishment and Remeasurement of plots (2nd ed.). ForestPlots.net.https://forestplots.net/upload/manualsenglish/rainfor_field_manual_en.pdf
Quinn, G. & Keough, M. (2002). Experimental Design and Data Analysis for Biologists (1st ed.). Cambridge University Press, New York.
Rügnitz, M., Chacón, M. and Porro R. (2009). Guía para la determinación de carbono en pequeñas propiedades rurales (1st ed.). World Agroforestry Center - Amazon Initiative Consortium. https://www.cifor-icraf.org/publications/downloads/Publications/PDFS/B16293.pdf
Segura, M., Kanninen, M. and Suárez, D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68, 143-150. https://doi.org/10.1007/s10457-006-9005-x
Senelwa, K. and Sims, R. (1998). Tree biomass equations for short rotation eucalypts grown in New Zealand. Biomass and Bioenergy. https://doi.org/10.1016/S0961-9534(97)00026-3
Slik, J., Aiba, S., Brearley, F., Cannon, C., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., van Valjenburg, J. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography, 19(1), 50-60. https://doi.org/10.1111/j.1466-8238.2009.00489.x
Slik, J., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongens, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J., Eler, E., Ferreira, L., Forshed, O., Fredriksson, G., Gillet J., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin E., Miyamoto, K., Araujo-Murakami, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, A., Onrizal, O., Parada-Gutierrez, A., Perminana, A., Poorter, L., Poulsen, J., Ramirez-Angulo, H., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Silva-Espejo, J., Silveira, M., Spironelo, W., ter Steege, H., Stevart, T., Navarro-Aguilar, G., Sunderland, T., Suzuki, E., Tang, J., Theilade, I. van der Heijden, G., van Valkenburg, J., Van Do, T., Vilanova, E., Vos, V., Wich, S., Wöll, H., Yoneda, T., Zang, R., Zhang, M., Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261-1271. https://doi.org/10.1111/geb.12092
Solomon, N., Pabi, O., Annag, T., Asante, I, and Birhane, E. (2018) The effects of land cover change on carbon stock dynamics in a dry Afromontane Forest in northern Ethiopia. Carbon Balance and Management, 13. https://doi.org/10.1186/s13021-018-0103-7
Spracklen, D. and Righelato, R. (2014) Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 11, 2741–2754. doi:10.5194/bg-11-2741-2014
Spracklen, D. and Righelato, R. (2016) Carbon storage and sequestration of re-growing montane forests in southern Ecuador. Forest Ecology and Management, 364, 139-144. https://doi.org/10.1016/j.foreco.2016.01.001
Tovar, A., Tovar, C., Saito, J., Soto, A., Regal, F., Cruz, Z., Véliz, C., Vásquez, P., Rivera, G. (2010). Yungas Peruanas – Bosques montanos de la vertiente oriental de los Andes del Perú: Una perspectiva ecorregional de conservación (1st ed.). Centro de Datos para la Conservación, facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina.
Tito, R., N. Salinas, E. G. Cosio, T. E. Boza Espinoza, J. G. Muñiz, S. Aragón, A. Nina, and R. Roman-Cuesta. 2022. Secondary forests in Peru: differential provision of ecosystem services compared to other post-deforestation forest transitions. Ecology and Society 27(3). https://doi.org/10.5751/ES-13446-270312
Unger, M., Homeier, J., and Leuschner, C. (2012) Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170, 263-274. https://doi.org/10.1007/s00442-012-2295-y
van der Sande, M., Poorter, L., Kooistra, L., Balvanera, P., Thonicke, K., Thompson, J., et al. (2017). Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica, 49, 593–603. http://dx.doi.org/10.1111/btp.12453
van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y., Farida and Verbist, B. (2002). Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. Science in China Series C Life Sciences. https://www.globalcarbonproject.org/global/pdf/landuse_Canadell_Zhou_Noble2003/Noordwijk_yc0075.pdf
Vizcaíno, Q., Williams, G. & Asbjornsen, H. (2020) Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic and Applied Ecology, 44, 24 - 34. https://doi.org/10.1016/j.baae.2019.12.004
Wilcke, W., Hess, T., Bengel, C., Homeier, J., Valarezo, C. & Zech, W. (2005). Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management, 205, 139-147. http://dx.doi.org/10.1016/j.foreco.2004.10.044
Young K. and León B. (2000). Biodiversity Conservation in Peru's Eastern Montane Forests. Mountain Research and Development, 20 (3), 208-211. https://doi.org/10.1659/0276-4741(2000)020[0208:BCIPSE]2.0.CO; 2

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Walescka Cachay, Karen I Eckhardt

This work is licensed under a Creative Commons Attribution 4.0 International License.