Navigating the Nexus between Renewable Energy and Biodiversity: Impacts and Mitigation Strategies for Ground-Mounted Photovoltaic Systems
DOI:
https://doi.org/10.3097/LO.2025.1141Keywords:
renewable energy, biodiversity, mitigation hierarchy, monitoring, strategic conservation planningAbstract
The dual crises of climate change and biodiversity loss demand integrated approaches to align renewable energy expansion with ecological conservation. Ground-mounted photovoltaic (PV) systems, a key component of renewable energy strategies, require significant land use, potentially impacting already vulnerable ecosystems. This study reviews the scientific literature on the ecological effects of ground-mounted PV systems under Central European conditions, with Austria as a case study. Findings reveal scattered evidence of altered environmental conditions, such as changes in microclimate and soil properties, and direct impacts on biodiversity, including habitat loss, fragmentation, and species behaviour. Current planning guidelines in Austria inconsistently address biodiversity concerns, often neglecting habitats outside protected areas. Mitigation measures, such as grazing, hedgerows, and structural elements, are widely recommended but lack robust scientific validation. The study highlights the urgent need for standardized Before-After-Control-Impact (BACI) studies and adaptive monitoring to better understand biodiversity impacts and improve mitigation. Strategic conservation planning at the landscape level is essential to balance energy and ecological goals, ensuring sustainable development. This research underscores the importance of harmonizing renewable energy policies with biodiversity conservation to address the intertwined climate and biodiversity crises effectively.
References
Agha, M., Lovich, J. E., Ennen, J. R., & Todd, B. D. (2020). Wind, sun, and wildlife: Do wind and solar energy development ‘short-circuit’ conservation in the western United States? Environmental Research Letters, 15(7), 075004. https://doi.org/10.1088/1748-9326/ab8846 DOI: https://doi.org/10.1088/1748-9326/ab8846
Amt der Kärntner Landesregierung (2021). Die Kraft der Sonne nutzen. Leitfaden für die Standortplanung von Photovoltaikanlagen in Kärnten. https://www.ktn.gv.at/DE/repos/files/ktn.gv.at/Abteilungen/Abt3/Dateien/PV-Leitfaden/Leitfaden%5fStandortplanung%20f%c3%bcr%20Photovoltaikanlagen%20in%20K%c3%a4rnten%2epdf?exp=927075&fps=903fe781f4aae34e89663afb9ff08d2b31e5a2c2. [Accessed 25 October 2023]
Amt der NÖ Landesregierung (2020). Widmungsart Grünland-Photovoltaikanlagen Ein Leitfaden zur Ausweisung im Flächenwidmungsplan. https://www.umweltgemeinde.at/download/?id=4269. [Accessed 25 October 2023]
Amt der NÖ Landesregierung (2022). Methodenbericht zur Findung von Zonen für Photovoltaik-Freiflächenanlagen. Stand Juli2022. https://www.raumordnung-noe.at/index.php?id=667. [Accessed 25 October 2023]
Amt der Oö Landesregierung (2022). OÖ Photovoltaik Strategie 2030. https://www.land-oberoesterreich.gv.at/files/publikationen/ooe_photovoltaik_strategie_2030.pdf. [Accessed 25 October 2023]
Amt der Steiermärkischen Landesregierung (2021). Leitfaden zur Standortprüfung für PV-Freiflächenanlagen; Prüflisten 2020. Stand 04/21. https://www.verwaltung.steiermark.at/cms/dokumente/11682131_79305527/5dd8d465/PV_Pr%C3%BCflisten_%C3%9Cberarbeitung_Letztversion_12042021.pdf [Accessed 25 October 2023]
Armstrong, A., Ostle, N., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016. https://doi.org/10.1088/1748-9326/11/7/074016 DOI: https://doi.org/10.1088/1748-9326/11/7/074016
Auer, H., Crespo del Granado, P., Oei, P.-Y., Hainsch, K., Löffler, K., Burandt, T., Huppmann, D., & Grabaak, I. (2020). Development and modelling of different decarbonization scenarios of the European energy system until 2050 as a contribution to achieving the ambitious 1.5 ∘C climate target—Establishment of open source/data modelling in the European H2020 project openENTRANCE. E & i Elektrotechnik Und Informationstechnik, 137(7), 346–358. https://doi.org/10.1007/s00502-020-00832-7 DOI: https://doi.org/10.1007/s00502-020-00832-7
Aycrigg, J. L., McCarley, T. R., Martinuzzi, S., Belote, R. T., Bosher, M., Bailey, C., & Reeves, M. (2023). A spatial and temporal assessment of energy development around wilderness areas. Biological Conservation, 279, 109907. https://doi.org/10.1016/j.biocon.2023.109907 DOI: https://doi.org/10.1016/j.biocon.2023.109907
Baldwin, R. F., & Beazley, K. F. (2019). Emerging Paradigms for Biodiversity and Protected Areas. Land, 8(3), Article 3. https://doi.org/10.3390/land8030043 DOI: https://doi.org/10.3390/land8030043
Birdlife Österreich (2021a). Kriterien für eine naturverträgliche Standortsteuerung für Photovoltaik-Freiflächenanlagen und Kriterien für die Errichtung und den Betrieb einer naturverträglichen Photovoltaik-Freiflächenanlage. https://www.birdlife.at/web/binary/saveas?filename_field=datas_fname&field=datas&model=ir.attachment&id=23995 [Accessed 25 October 2023]
Birdlife Österreich (2021b). Photovoltaik-Freiflächenanlagen und Vogelschutz in Österreich - Konflikt oder Synergie. https://www.birdlife.at/vogelschutz/leitfaeden-vogelschutz/ [Accessed 25 October 2023]
Black, T. V., & Robertson, B. A. (2020). How to disguise evolutionary traps created by solar panels. Journal of Insect Conservation, 24(2), 241–247. https://doi.org/10.1007/s10841-019-00191-5 DOI: https://doi.org/10.1007/s10841-019-00191-5
Blaydes, H., Gardner, E., Whyatt, J. D., Potts, S. G., & Armstrong, A. (2022). Solar park management and design to boost bumble bee populations. Environmental Research Letters, 17(4), 044002. https://doi.org/10.1088/1748-9326/ac5840 DOI: https://doi.org/10.1088/1748-9326/ac5840
Blaydes, H., Potts, S. G., Whyatt, J. D., & Armstrong, A. (2021). Opportunities to enhance pollinator biodiversity in solar parks. Renewable and Sustainable Energy Reviews, 145, 111065. https://doi.org/10.1016/j.rser.2021.111065 DOI: https://doi.org/10.1016/j.rser.2021.111065
Boakes, E. H., Fuller, R. A., & McGowan, P. J. K. (2019). The extirpation of species outside protected areas. Conservation Letters, 12(1), e12608. https://doi.org/10.1111/conl.12608 DOI: https://doi.org/10.1111/conl.12608
BSW & NABU (2021): Kriterien für naturverträgliche Photovoltaik-Freiflächenanlagen. Gemeinsames Papier. https://www.nabu.de/imperia/md/content/nabude/energie/solarenergie/210505-nabu-bsw-kritereien_fuer_naturvertraegliche_solarparks.pdf [Accessed 24 October 2023]
CBD. (2022). Kunming-Montreal Global Biodiversity Framework. CBD/COP/DEC/15/4. Montreal: Convention on Biological Diversity. 14. https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf
Chock, R. Y., Clucas, B., Peterson, E. K., Blackwell, B. F., Blumstein, D. T., Church, K., Fernández-Juricic, E., Francescoli, G., Greggor, A. L., Kemp, P., Pinho, G. M., Sanzenbacher, P. M., Schulte, B. A., & Toni, P. (2021). Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. Conservation Science and Practice, 3(2), e319. https://doi.org/10.1111/csp2.319 DOI: https://doi.org/10.1111/csp2.319
Demuth, B., & Maack, A. (2019). Photovoltaik-Freiflächenanlagen. Planung und Installation mit Mehrwert für den Naturschutz. Klima- und Naturschutz: Hand in Hand. Ein Handbuch für Kommunen, Regionen, Klimaschutzbeauftragte, Energie-, Stadt- und Landschaftsplanungsbüros. Heiland, S. (Ed.), Berlin. https://kommbio.de/wp-content/uploads/2024/10/klima-und-naturschutz-hand-in-hand-heft-6-photovoltaik-freiflaechenanlagen.pdf [Accessed 14 September 2023]
Dhar, A., Naeth, M. A., Jennings, P. D., & Gamal El-Din, M. (2020). Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Science of The Total Environment, 718, 134602. https://doi.org/10.1016/j.scitotenv.2019.134602 DOI: https://doi.org/10.1016/j.scitotenv.2019.134602
Dolezal, A. G., Torres, J., & O’Neal, M. E. (2021). Can Solar Energy Fuel Pollinator Conservation? Environmental Entomology, 50(4), 757–761. https://doi.org/10.1093/ee/nvab041 DOI: https://doi.org/10.1093/ee/nvab041
Dudley, N., Jonas, H., Nelson, F., Parrish, J., Pyhälä, A., Stolton, S., & Watson, J. E. M. (2018). The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Global Ecology and Conservation, 15, e00424. https://doi.org/10.1016/j.gecco.2018.e00424 DOI: https://doi.org/10.1016/j.gecco.2018.e00424
Dunnett, S., Holland, R. A., Taylor, G., & Eigenbrod, F. (2022). Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions. Proceedings of the National Academy of Sciences, 119(6), e2104764119. https://doi.org/10.1073/pnas.2104764119 DOI: https://doi.org/10.1073/pnas.2104764119
EAG (2023). Bundesgesetz über den Ausbau von Energie aus erneuerbaren Quellen (Erneuerbaren-Ausbau-Gesetz – EAG). BGBl. I. Nr. 150/2021; version 14.07.2023.
Eriksson, O. (2021). The importance of traditional agricultural landscapes for preventing species extinctions. Biodiversity and Conservation, 30(5). https://doi.org/10.1007/s10531-021-02145-3 DOI: https://doi.org/10.1007/s10531-021-02145-3
Essl, F. & Egger, G. (2010). Lebensraumvielfalt in Österreich - Gefährdung und Handlungsbedarf. Zusammenschau der Roten Listen gefährdeter Biotoptypen Österreichs. Naturwissenschaftlicher Verein für Kärnten, Umweltbundesamt, 109 pp.
Estrada-Carmona, N., Sánchez, A. C., Remans, R., & Jones, S. K. (2022). Complex agricultural landscapes host more biodiversity than simple ones: A global meta-analysis. Proceedings of the National Academy of Sciences, 119(38), e2203385119. https://doi.org/10.1073/pnas.2203385119 DOI: https://doi.org/10.1073/pnas.2203385119
Etter, A., Andrade, A., Nelson, C. R., Cortés, J., & Saavedra, K. (2020). Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems. Land Use Policy, 99, 104874. https://doi.org/10.1016/j.landusepol.2020.104874 DOI: https://doi.org/10.1016/j.landusepol.2020.104874
European Commission. (2019). The European Green Deal: Striving to Be the First Climate-Neutral Continent. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
European Commission. (2020). EU Biodiversity Strategy for 2030 Bringing nature back into our lives. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0380
European Union (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. http://data.europa.eu/eli/dir/1992/43/oj
European Union. (2023). Directive—EU - 2023/2413—EN - Renewable Energy Directive—EUR-Lex. https://eur-lex.europa.eu/eli/dir/2023/2413/oj/eng
European Union. (2024). Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on nature restoration and amending Regulation (EU) 2022/869 (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2024/1991/oj/eng
Evans, M. J., Mainali, K., Soobitsky, R., Mills, E., & Minnemeyer, S. (2023). Predicting patterns of solar energy buildout to identify opportunities for biodiversity conservation. Biological Conservation, 283, 110074. https://doi.org/10.1016/j.biocon.2023.110074 DOI: https://doi.org/10.1016/j.biocon.2023.110074
Fakharizadehshirazi, E., & Rösch, C. (2024). A novel socio-techno-environmental GIS approach to assess the contribution of ground-mounted photovoltaics to achieve climate neutrality in Germany. Renewable Energy, 227, 120117. https://doi.org/10.1016/j.renene.2024.120117 DOI: https://doi.org/10.1016/j.renene.2024.120117
Fechner, H. (2020). Ermittlung des Flächenpotentials für den Photovoltaik-Ausbau in Österreich: Welche Flächenkategorien sind für die Erschließung von besonderer Bedeutung, um das Ökostromziel realisieren zu können. Studie im Auftrag von Österreichs Energie, Endbericht.
Formayer, H., Parajka, J., Petermann, J., Baumgarten, A., Becsi, B., Dullinger, S., Glatzel, S., Gobiet, A., Kainz, M., Laaha, G., Lexer, M., Maraun, D., Nicholson, L., Olefs, M., Stumpp, C., Zangerl, C., & Mayer, M. (2025). Physical and ecological manifestation of climate change in Austria. In D. Huppmann, M. Keiler, K. Riahi, & H. Rieder (Hrsg.), Second Austrian Assessment Report on Climate Change (AAR2) of the Austrian Panel on Climate Change (APCC). Austrian Academy of Sciences Press. https://doi.org/10.1553/aar2-ch1
Gómez-Catasús, J., Morales, M. B., Giralt, D., del Portillo, D. G., Manzano-Rubio, R., Solé-Bujalance, L., Sardà-Palomera, F., Traba, J., & Bota, G. (2024). Solar photovoltaic energy development and biodiversity conservation: Current knowledge and research gaps. Conservation Letters. Scopus. https://doi.org/10.1111/conl.13025 DOI: https://doi.org/10.1111/conl.13025
Graham, M., Ates, S., Melathopoulos, A. P., Moldenke, A. R., DeBano, S. J., Best, L. R., & Higgins, C. W. (2021). Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-86756-4 DOI: https://doi.org/10.1038/s41598-021-86756-4
Guiller, C., Affre, L., Deschamps-Cottin, M., Geslin, B., Kaldonski, N., & Tatoni, T. (2017). Impacts of solar energy on butterfly communities in mediterranean agro-ecosystems. Environmental Progress & Sustainable Energy, 36(6), 1817–1823. https://doi.org/10.1002/ep.12626 DOI: https://doi.org/10.1002/ep.12626
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & Kroon, H. de. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809. https://doi.org/10.1371/journal.pone.0185809 DOI: https://doi.org/10.1371/journal.pone.0185809
Herden, C., Rassmus, J., & Gharadjedaghi, B. (2009). Naturschutzfachliche Bewertungsmethoden von Freilandphotovoltaikanlagen. 247.
Herden, C., Rassmus, J., Gharadjedaghi, B.: Naturschutzfachliche Bewertungsmethoden von Freilandphotovoltaikanlagen. BfN-Skripten 247 – Bonn, Bad Godesberg, 2009.
Hermoso, V., Bota, G., Brotons, L., & Morán-Ordóñez, A. (2023). Addressing the challenge of photovoltaic growth: Integrating multiple objectives towards sustainable green energy development. Land Use Policy, 128, 106592. https://doi.org/10.1016/j.landusepol.2023.106592 DOI: https://doi.org/10.1016/j.landusepol.2023.106592
Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Barrows, C. W., Belnap, J., Ochoa-Hueso, R., Ravi, S., & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779. https://doi.org/10.1016/j.rser.2013.08.041 DOI: https://doi.org/10.1016/j.rser.2013.08.041
Hernandez, R. R., Hoffacker, M. K., Murphy-Mariscal, M. L., Wu, G. C., & Allen, M. F. (2015). Solar energy development impacts on land cover change and protected areas. Proceedings of the National Academy of Sciences, 112(44), 13579–13584. https://doi.org/10.1073/pnas.1517656112 DOI: https://doi.org/10.1073/pnas.1517656112
Hietel, E., Reichling, T., & Lenz, C. (2021). Leitfaden für naturverträgliche und biodiversitätsfreundliche Solarparks – Maßnahmensteckbriefe und Checklisten. https://mkuem.rlp.de/fileadmin/14/Themen/Energie_und_Klimaschutz/3._Erneuerbare_Energien/Solarenergie/Leitfaden_Massnahmensteckbriefe.pdf [Accessed 25 October 2023]
im-plan-tat Raumplanungs-GmbH & Co KG (2022). Leitfaden Förderung der Biodiversität auf Photovoltaik-Freiflächenanlagen. https://www.im-plan-tat.at/photovoltaik-freiflaechenanlagen-und-biodiversitaet/ [Accessed 25 October 2023]
Jacobson, M. Z., Delucchi, M. A., Bauer, Z. A. F., Goodman, S. C., Chapman, W. E., Cameron, M. A., Bozonnat, C., Chobadi, L., Clonts, H. A., Enevoldsen, P., Erwin, J. R., Fobi, S. N., Goldstrom, O. K., Hennessy, E. M., Liu, J., Lo, J., Meyer, C. B., Morris, S. B., Moy, K. R., … Yachanin, A. S. (2017). 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule, 1(1), 108–121. https://doi.org/10.1016/j.joule.2017.07.005 DOI: https://doi.org/10.1016/j.joule.2017.07.005
Jakle, A. (2012). Wind Development and Wildlife Mitigation in Wyoming: A Primer. Laramie, Wyoming: Ruckelshaus Institute of Environment and Natural Resources. https://www.uwyo.edu/haub/_files/_docs/ruckelshaus/pubs/2012-wind-wildlife-mitigation-primer.pdf [Accessed 31 March 2025]
Jessel, B., & Kuler, B. (2006). Evaluation of standalone photovoltaic power plants. Naturschutz und Landschaftsplanung, 38(7), 225.
Jung, M., Alagador, D., Chapman, M., Hermoso, V., Kujala, H., O’Connor, L., Schinegger, R., Verburg, P. H., & Visconti, P. (2024). An assessment of the state of conservation planning in Europe. Philosophical Transactions of the Royal Society B: Biological Sciences, 379(1902), 20230015. https://doi.org/10.1098/rstb.2023.0015 DOI: https://doi.org/10.1098/rstb.2023.0015
Khan, J., & Arsalan, M. H. (2016). Solar power technologies for sustainable electricity generation – A review. Renewable and Sustainable Energy Reviews, 55, 414–425. https://doi.org/10.1016/j.rser.2015.10.135 DOI: https://doi.org/10.1016/j.rser.2015.10.135
Kiesecker, J. M., Copeland, H., Pocewicz, A., & McKenney, B. (2010). Development by design: Blending landscape-level planning with the mitigation hierarchy. Frontiers in Ecology and the Environment, 8(5), 261–266. https://doi.org/10.1890/090005 DOI: https://doi.org/10.1890/090005
Kiesecker, J. M., Evans, J. S., Oakleaf, J. R., Dropuljić, K. Z., Vejnović, I., Rosslowe, C., Cremona, E., Bhattacharjee, A. L., Nagaraju, S. K., Ortiz, A., Robinson, C., Ferres, J. L., Zec, M., & Sochi, K. (2024). Land use and Europe’s renewable energy transition: Identifying low-conflict areas for wind and solar development. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1355508 DOI: https://doi.org/10.3389/fenvs.2024.1355508
Kim, J. Y., Koide, D., Ishihama, F., Kadoya, T., & Nishihiro, J. (2021). Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Science of The Total Environment, 779, 146475. https://doi.org/10.1016/j.scitotenv.2021.146475 DOI: https://doi.org/10.1016/j.scitotenv.2021.146475
Kitazawa, M., Yamaura, Y., Senzaki, M., Kawamura, K., Hanioka, M., & Nakamura, F. (2019). An Evaluation of Five Agricultural Habitat Types for Openland Birds: Abandoned Farmland Can Have Comparative Values to Undisturbed Wetland. Ornithological Science, 18(1), 3–16. https://doi.org/10.2326/osj.18.3 DOI: https://doi.org/10.2326/osj.18.3
KNE (2021). Kriterien für eine naturverträgliche Standortwahl für Solar-Freiflächenanlagen - Übersicht über die Einschätzung der Eignung verschiedener Flächentypen. https://www.naturschutz-energiewende.de/wp-content/uploads/KNE_Kriterienkatalog-zur-naturvertraeglichen-Anlagengestaltung-PV-Freiflaechenanlagen.pdf [Accessed 25 October 2023]
Lafitte, A., Sordello, R., de Crespin de Billy, V., Froidevaux, J., Gourdain, P., Kerbiriou, C., Langridge, J., Marx, G., Schatz, B., Thierry, C., & Reyjol, Y. (2022). What evidence exists regarding the effects of photovoltaic panels on biodiversity? A critical systematic map protocol. Environmental Evidence, 11(1), 36. https://doi.org/10.1186/s13750-022-00291-x DOI: https://doi.org/10.1186/s13750-022-00291-x
Lafitte, A., Sordello, R., Ouédraogo, D.-Y., Thierry, C., Marx, G., Froidevaux, J., Schatz, B., Kerbiriou, C., Gourdain, P., & Reyjol, Y. (2023). Existing evidence on the effects of photovoltaic panels on biodiversity: A systematic map with critical appraisal of study validity. Environmental Evidence, 12(1), 25. https://doi.org/10.1186/s13750-023-00318-x DOI: https://doi.org/10.1186/s13750-023-00318-x
Lambert, Q., Bischoff, A., Cueff, S., Cluchier, A., & Gros, R. (2021). Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. Land Degradation & Development, 32(18), 5190–5202. https://doi.org/10.1002/ldr.4101 DOI: https://doi.org/10.1002/ldr.4101
Lambert, Q., Bischoff, A., Enea, M., & Gros, R. (2023). Photovoltaic power stations: An opportunity to promote European semi-natural grasslands? Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1137845 DOI: https://doi.org/10.3389/fenvs.2023.1137845
Lambert, Q., Gros, R., & Bischoff, A. (2022). Ecological restoration of solar park plant communities and the effect of solar panels. Ecological Engineering, 182, 106722. https://doi.org/10.1016/j.ecoleng.2022.106722 DOI: https://doi.org/10.1016/j.ecoleng.2022.106722
Land Salzburg (2016). Leitfaden Energie im REK. Berücksichtigung von Energiezielen im Räumlichen Entwicklungskonzept (REK). https://www.salzburg.gv.at/bauenwohnen_/Documents/Energie_REK_Leitfaden_Juni2016.pdf [Accessed 25 October 2023]
Levin, M. O., Kalies, E. L., Forester, E., Jackson, E. L. A., Levin, A. H., Markus, C., McKenzie, P. F., Meek, J. B., & Hernandez, R. R. (2023). Solar Energy-driven Land-cover Change Could Alter Landscapes Critical to Animal Movement in the Continental United States. Environmental Science & Technology, 57(31), 11499–11509. https://doi.org/10.1021/acs.est.3c00578 DOI: https://doi.org/10.1021/acs.est.3c00578
LfU Bayern − Bayerisches Landesamt für Umwelt (2014). Praxis-Leitfaden für die ökologische Gestaltung von Photovoltaik-Freiflächenanlagen. München. https://klima.landkreis-bayreuth.de/media/9525/lfu-praxisleitfaden-oekologische-gestaltung-pv-freiflaechanlagen.pdf [Accessed 25 October 2023]
Liu, Y., Ding, C., Su, D., Wang, T., & Wang, T. (2022). Solar park promoted microbial nitrogen and phosphorus cycle potentials but reduced soil prokaryotic diversity and network stability in alpine desert ecosystem. Frontiers in Microbiology, 13. https://www.frontiersin.org/articles/10.3389/fmicb.2022.976335 DOI: https://doi.org/10.3389/fmicb.2022.976335
Liu, Y., Zhang, R.-Q., Huang, Z., Cheng, Z., López-Vicente, M., Ma, X.-R., & Wu, G.-L. (2019). Solar photovoltaic panels significantly promote vegetation recovery by modifying the soil surface microhabitats in an arid sandy ecosystem. Land Degradation & Development, 30(18), 2177–2186. https://doi.org/10.1002/ldr.3408 DOI: https://doi.org/10.1002/ldr.3408
Loiseau, N., Thuiller, W., Stuart-Smith, R. D., Devictor, V., Edgar, G. J., Velez, L., Cinner, J. E., Graham, N. A. J., Renaud, J., Hoey, A. S., Manel, S., & Mouillot, D. (2021). Maximizing regional biodiversity requires a mosaic of protection levels. PLOS Biology, 19(5), e3001195. https://doi.org/10.1371/journal.pbio.3001195 DOI: https://doi.org/10.1371/journal.pbio.3001195
Lovich, J. E., & Ennen, J. R. (2011). Wildlife Conservation and Solar Energy Development in the Desert Southwest, United States. BioScience, 61(12), 982–992. https://doi.org/10.1525/bio.2011.61.12.8 DOI: https://doi.org/10.1525/bio.2011.61.12.8
McCoshum, S. M., & Geber, M. A. (2020). Land Conversion for Solar Facilities and Urban Sprawl in Southwest Deserts Causes Different Amounts of Habitat Loss for Ashmeadiella Bees. Journal of the Kansas Entomological Society, 92(2), 468–478. https://doi.org/10.2317/0022-8567-92.2.468 DOI: https://doi.org/10.2317/0022-8567-92.2.468
Meyer, M. H., Dullau, S., Scholz, P., Meyer, M. A., & Tischew, S. (2023). Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks. Land, 12(6), Article 6. https://doi.org/10.3390/land12061265 DOI: https://doi.org/10.3390/land12061265
Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg (2019). Freiflächensolaranlagen. Handlungsleitfaden. https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/2_Presse_und_Service/Publikationen/Energie/Handlungsleitfaden_Freiflaechensolaranlagen.pdf [Accessed 2 October 2023]
Mishra, S. K., Zhu, M., Bernknopf, R. L., & Walston, L. J. (2023). Valuation of pollination services from habitat management: A case study of utility scale solar energy facilities in the United States. Environmental Research Communications, 5(6), 065006. https://doi.org/10.1088/2515-7620/acda7f DOI: https://doi.org/10.1088/2515-7620/acda7f
Montag, H., Parker, G. & Clarkson, T. (2016). The Effects of Solar Farms on Local Biodiversity; A Comparative Study. Clarkson and Woods and Wychwood Biodiversity. https://helapco.gr/wp-content/uploads/Solar_Farms_Biodiversity_Study.pdf [Accessed: 03 September 2023]
Moore-O’Leary, K. A., Hernandez, R. R., Johnston, D. S., Abella, S. R., Tanner, K. E., Swanson, A. C., Kreitler, J., & Lovich, J. E. (2017). Sustainability of utility-scale solar energy – critical ecological concepts. Frontiers in Ecology and the Environment, 15(7), 385–394. https://doi.org/10.1002/fee.1517 DOI: https://doi.org/10.1002/fee.1517
Moorman, C., Grodsky, S.M. & Rupp, S.P. (2019). Renewable energy and wildlife conservation. Johns Hopkins University Press, Baltimore.
Moscatelli, M. C., Marabottini, R., Massaccesi, L., & Marinari, S. (2022). Soil properties changes after seven years of ground mounted photovoltaic panels in Central Italy coastal area. Geoderma Regional, 29, e00500. https://doi.org/10.1016/j.geodrs.2022.e00500 DOI: https://doi.org/10.1016/j.geodrs.2022.e00500
Naturfreunde Österreich (2022). Positionspapier der Naturfreunde Österreich zum Bereich Photovoltaik und Solarthermie speziell unter Beachtung des alpinen Raums in Österreich. https://umwelt.naturfreunde.at/files/uploads/2022/07/Endfassung_NF_Position_Photovoltaik_der_Umweltreferentinnen_final_Version_Juli_2022.pdf [Accessed 25 October 2023]
Naturschutzbund Österreich (2020). Nutzung von Sonnenenergie zur Stromerzeugung: Position des Naturschutzbund Österreich, beschlossen am 4. Juni 2020. https://naturschutzbund.at/files/ueber_uns/positionen/Naturschutzbund_Position%20Photovoltaik.pdf [Accessed 25 October 2023]
Nordberg, E. J., & Schwarzkopf, L. (2023). Developing conservoltaic systems to support biodiversity on solar farms. Austral Ecology, 48(3), 643–649. https://doi.org/10.1111/aec.13289 DOI: https://doi.org/10.1111/aec.13289
ÖIR (2020). Rahmenrichtlinie Photovoltaikanlagen auf Freiflächen für das Burgenland 2020. Endbericht. https://www.burgenland.at/fileadmin/user_upload/Downloads/Buerger_und_Service/Kundmachungen/2021/PV_Rahmenrichtlinie_2020_50.pdf [Accessed 25 October 2023]
Pérez-García, J. M., Morant, J., Arrondo, E., Sebastián-González, E., Lambertucci, S. A., Santangeli, A., Margalida, A., Sánchez-Zapata, J. A., Blanco, G., Donázar, J. A., Carrete, M., & Serrano, D. (2022). Priority areas for conservation alone are not a good proxy for predicting the impact of renewable energy expansion. Proceedings of the National Academy of Sciences, 119(33), e2204505119. https://doi.org/10.1073/pnas.2204505119 DOI: https://doi.org/10.1073/pnas.2204505119
Peschel, R., Peschel, T., Marchand, M. & Hauke, J. (2019). Solarparks-Gewinne für die Biodiversität. Bundesverband Neue Energiewirtschaft (bne) eV (Hrsg.), Berlin.
Peschel, T. (2010). Solarparks—Chancen für die Biodiversität (45; Renews Spezial). https://www.unendlich-viel-energie.de/mediathek/publikationen/solarparks-%E2%80%93-chancen-fuer-die-biodiversitaet
Pirotta, E., Thomas, L., Costa, D. P., Hall, A. J., Harris, C. M., Harwood, J., Kraus, S. D., Miller, P. J. O., Moore, M. J., Photopoulou, T., Rolland, R. M., Schwacke, L., Simmons, S. E., Southall, B. L., & Tyack, P. L. (2022). Understanding the combined effects of multiple stressors: A new perspective on a longstanding challenge. Science of The Total Environment, 821, 153322. https://doi.org/10.1016/j.scitotenv.2022.153322 DOI: https://doi.org/10.1016/j.scitotenv.2022.153322
Pörtner, H.-O., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T., Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y. J., & Val, A. L. (2023). Overcoming the coupled climate and biodiversity crises and their societal impacts. Science, 380(6642), eabl4881. https://doi.org/10.1126/science.abl4881 DOI: https://doi.org/10.1126/science.abl4881
PV Austria & ÖIR (2022). Photovoltaik in der Landschaft. Planungsleitlinie für PV-Freiflächenanlagen mit Weitsicht für Umwelt und Raum. https://pvaustria.at/wp-content/uploads/PV_Austria_Leitlinie_PV-FFA_final.pdf [Accessed 17 July 2024]
Rada, S., Schweiger, O., Harpke, A., Kühn, E., Kuras, T., Settele, J., & Musche, M. (2019). Protected areas do not mitigate biodiversity declines: A case study on butterflies. Diversity and Distributions, 25(2), 217–224. https://doi.org/10.1111/ddi.12854 DOI: https://doi.org/10.1111/ddi.12854
Randle-Boggis, R. J., White, P. C. L., Cruz, J., Parker, G., Montag, H., Scurlock, J. M. O., & Armstrong, A. (2020). Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach. Renewable and Sustainable Energy Reviews, 125, 109775. https://doi.org/10.1016/j.rser.2020.109775 DOI: https://doi.org/10.1016/j.rser.2020.109775
Rehbein, J. A., Watson, J. E. M., Lane, J. L., Sonter, L. J., Venter, O., Atkinson, S. C., & Allan, J. R. (2020). Renewable energy development threatens many globally important biodiversity areas. Global Change Biology, 26(5), 3040–3051. https://doi.org/10.1111/gcb.15067 DOI: https://doi.org/10.1111/gcb.15067
Research Rabbit (s.a.). https://researchrabbitapp.com [Accessed 31 March 2025]
Rischen, T., Frenzel, T., & Fischer, K. (2021). Biodiversity in agricultural landscapes: Different non-crop habitats increase diversity of ground-dwelling beetles (Coleoptera) but support different communities. Biodiversity and Conservation, 30(13). https://doi.org/10.1007/s10531-021-02284-7 DOI: https://doi.org/10.1007/s10531-021-02284-7
Schlegel (2021). Auswirkungen von Freiflächen-Photovoltaikanlagen auf Biodiversität und Umwelt. Züricher Hochschule für Angewandte Wissenschaften, IUNR Institut für Umwelt und natürliche Ressourcen. Gutachten. https://doi.org/10.21256/zhaw-23607
Sinha, P., Hoffman, B., Sakers, J., & Althouse, L. (2018). Best Practices in Responsible Land Use for Improving Biodiversity at a Utility-Scale Solar Facility. Case Studies in the Environment, 2(1), 1–12. https://doi.org/10.1525/cse.2018.001123 DOI: https://doi.org/10.1525/cse.2018.001123
Sawyer, H., Korfanta, N. M., Kauffman, M. J., Robb, B. S., Telander, A. C., & Mattson, T. (2022). Trade-offs between utility-scale solar development and ungulates on western rangelands. Frontiers in Ecology and the Environment, 20(6), 345–351. https://doi.org/10.1002/fee.2498 DOI: https://doi.org/10.1002/fee.2498
Schmidt, J., Mitter, H., Baumann, M., Boza-Kiss, B., Huppmann, D., Wehrle, S., Zwieb, L., & Klingler, M. (2025). Need for speed: Co-creating scenarios for climate neutral energy systems in Austria in 2040. Energy Policy, 198, 114493. https://doi.org/10.1016/j.enpol.2024.114493 DOI: https://doi.org/10.1016/j.enpol.2024.114493
Schwarz, R., & Ziv, Y. (2025). Shedding light on biodiversity: Reviewing existing knowledge and exploring hypothesised impacts of agrophotovoltaics. Biological Reviews, 100(2), 855–870. https://doi.org/10.1111/brv.13165 DOI: https://doi.org/10.1111/brv.13165
Smallwood, K. S. (2022). Utility-scale solar impacts to volant wildlife. The Journal of Wildlife Management, 86(4), Article 4. https://doi.org/10.1002/jwmg.22216 DOI: https://doi.org/10.1002/jwmg.22216
Szabadi, K. L., Kurali, A., Rahman, N. A. A., Froidevaux, J. S. P., Tinsley, E., Jones, G., Görföl, T., Estók, P., & Zsebők, S. (2023). The use of solar farms by bats in mosaic landscapes: Implications for conservation. Global Ecology and Conservation, 44, e02481. https://doi.org/10.1016/j.gecco.2023.e02481 DOI: https://doi.org/10.1016/j.gecco.2023.e02481
Száz, D., Mihályi, D., Farkas, A., Egri, Á., Barta, A., Kriska, G., Robertson, B., & Horváth, G. (2016). Polarized light pollution of matte solar panels: Anti-reflective photovoltaics reduce polarized light pollution but benefit only some aquatic insects. Journal of Insect Conservation, 20(4), 663–675. https://doi.org/10.1007/s10841-016-9897-3 DOI: https://doi.org/10.1007/s10841-016-9897-3
Tanner, K. E., Moore-O’Leary, K. A., Parker, I. M., Pavlik, B. M., & Hernandez, R. R. (2020). Simulated solar panels create altered microhabitats in desert landforms. Ecosphere, 11(4), e03089. https://doi.org/10.1002/ecs2.3089 DOI: https://doi.org/10.1002/ecs2.3089
Tinsley, E., Froidevaux, J. S. P., Zsebők, S., Szabadi, K. L., & Jones, G. (2023). Renewable energies and biodiversity: Impact of ground-mounted solar photovoltaic sites on bat activity. Journal of Applied Ecology, 60(9), 1752–1762. https://doi.org/10.1111/1365-2664.14474 DOI: https://doi.org/10.1111/1365-2664.14474
Tiroler Umweltanwaltschaft (2013). Photovoltaik-Anlagen: Vorläufiges Positionspapier der Tiroler Umweltanwaltschaft. https://www.tiroler-umweltanwaltschaft.gv.at/wp-content/uploads/2023/09/Photovoltaik-PP.pdf [Accessed 03 September 2023]
Tölgyesi, C., Bátori, Z., Pascarella, J., Erdős, L., Török, P., Batáry, P., Birkhofer, K., Scherer, L., Michalko, R., Košulič, O., Zaller, J. G., & Gallé, R. (2023). Ecovoltaics: Framework and future research directions to reconcile land-based solar power development with ecosystem conservation. Biological Conservation, 285, 110242. https://doi.org/10.1016/j.biocon.2023.110242 DOI: https://doi.org/10.1016/j.biocon.2023.110242
Tsafack, N., Fang, W., Wang, X., Xie, Y., Wang, X., & Fattorini, S. (2022). Influence of grazing and solar panel installation on tenebrionid beetles (Coleoptera Tenebrionidae) of a central Asian steppe. Journal of Environmental Management, 320, 115791. https://doi.org/10.1016/j.jenvman.2022.115791 DOI: https://doi.org/10.1016/j.jenvman.2022.115791
Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289–296. https://doi.org/10.1016/S0301-4215(03)00241-6 DOI: https://doi.org/10.1016/S0301-4215(03)00241-6
Uldrijan, D., Černý, M., & Winkler, J. (2022). Solar Park – Opportunity or Threat for Vegetation and Ecosystem. Journal of Ecological Engineering, 23(11), 1–10. https://doi.org/10.12911/22998993/153456 DOI: https://doi.org/10.12911/22998993/153456
Uldrijan, D., Kováčiková, M., Jakimiuk, A., Vaverková, M. D., & Winkler, J. (2021). Ecological effects of preferential vegetation composition developed on sites with photovoltaic power plants. Ecological Engineering, 168, 106274. https://doi.org/10.1016/j.ecoleng.2021.106274 DOI: https://doi.org/10.1016/j.ecoleng.2021.106274
Uldrijan, D., Winkler, J., & Vaverková, M. D. (2023). Bioindication of Environmental Conditions Using Solar Park Vegetation. Environments, 10(5), Article 5. https://doi.org/10.3390/environments10050086 DOI: https://doi.org/10.3390/environments10050086
Umweltbundesamt (2020). Monitoring von Lebensraumtypen und Arten von gemeinschaftlicher Bedeutung in Österreich 2016 - 2018 und Grundlagenerstellung für den Bericht gemäß Art. 17 der FFH-Richtlinie im Jahr 2019. Endbericht. Teil 2: Artikel 17-Bericht, REP-0734, Wien
Umweltbundesamt (2022). 13. Umweltkontrollbericht. Umweltsituation in Österreich. Umweltbundesamt, Wien
UNFCCC, N. Y. (2015). The Paris Agreement | UNFCCC. https://unfccc.int/process-and-meetings/the-paris-agreement
Valera, F., Bolonio, L., La Calle, A., & Moreno, E. (2022). Deployment of Solar Energy at the Expense of Conservation Sensitive Areas Precludes Its Classification as an Environmentally Sustainable Activity. Land, 11(12), Article 12. https://doi.org/10.3390/land11122330 DOI: https://doi.org/10.3390/land11122330
Vervloesem, J., Marcheggiani, E., Choudhury, M. A. M., & Muys, B. (2022). Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability, 14(12), Article 12. https://doi.org/10.3390/su14127493 DOI: https://doi.org/10.3390/su14127493
Walston, L. J., Rollins, K. E., LaGory, K. E., Smith, K. P., & Meyers, S. A. (2016). A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renewable Energy, 92, 405–414. https://doi.org/10.1016/j.renene.2016.02.041 DOI: https://doi.org/10.1016/j.renene.2016.02.041
Walston, L. J., Li, Y., Hartmann, H. M., Macknick, J., Hanson, A., Nootenboom, C., Lonsdorf, E., & Hellmann, J. (2021). Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States. Ecosystem Services, 47, 101227. https://doi.org/10.1016/j.ecoser.2020.101227 DOI: https://doi.org/10.1016/j.ecoser.2020.101227
Wasser Tirol - Ressourcenmanagement-GmbH (2022). Photovoltaik-Freiflächenpotenzial in Tirol – GIS-basierte Abschätzung der Photovoltaik-Freiflächenpotenziale in Tirol. https://www.tirol.gv.at/fileadmin/themen/umwelt/wasser_wasserrecht/PV-FREIFLAECHEN-Bericht-fi.pdf [Accessed 25 October 2023]
Watson, J. E. M., Keith, D. A., Strassburg, B. B. N., Venter, O., Williams, B., & Nicholson, E. (2020). Set a global target for ecosystems. Nature, 578(7795), 360–362. https://doi.org/10.1038/d41586-020-00446-1 DOI: https://doi.org/10.1038/d41586-020-00446-1
Wuczyński, A., Dajdok, Z., Wierzcholska, S., & Kujawa, K. (2014). Applying red lists to the evaluation of agricultural habitat: Regular occurrence of threatened birds, vascular plants, and bryophytes in field margins of Poland. Biodiversity and Conservation, 23(4). https://doi.org/10.1007/s10531-014-0649-y DOI: https://doi.org/10.1007/s10531-014-0649-y
WWF Österreich (2021). WWF-Positionspapier zum Ausbau der Photovoltaik. https://www.wwf.at/wp-content/cms_documents/wwf-pv-position-1.pdf [Accessed 25 October 2023]
Zaplata, M. K. (2023). Solar parks as livestock enclosures can become key to linking energy, biodiversity and society. People and Nature, 5(5), 1457–1463. https://doi.org/10.1002/pan3.10522 DOI: https://doi.org/10.1002/pan3.10522
Zhang, Y., Tian, Z., Liu, B., Chen, S., & Wu, J. (2023). Effects of photovoltaic power station construction on terrestrial ecosystems: A meta-analysis. Frontiers in Ecology and Evolution, 11. https://www.frontiersin.org/articles/10.3389/fevo.2023.1151182 DOI: https://doi.org/10.3389/fevo.2023.1151182
Zulka, K.P. (2005). Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 1: Säugetiere, Vögel, Heuschrecken, Wasserkäfer, Netzflügler, Schnabelfliegen, Tagfalter. Böhlau, Wien. Grüne Reihe des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Gesamtherausgeberin Ruth Wallner) Vol. 14/1, 406 pp.
Zulka, K.P. (2007). Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 2: Kriechtiere, Lurche, Fische, Nachtfalter, Weichtiere. Böhlau, Wien. Grüne Reihe des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Gesamtherausgeberin Ruth Wallner) Vol. 14/2, 515 p
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Christa Hainz-Renetzeder, Thomas Schauppenlehner, Patrick Scherhaufer, Bärbel Pachinger

This work is licensed under a Creative Commons Attribution 4.0 International License.




