Spatially-explicit biodiversity models help unpack the varying effectiveness of Agri-Environment Measures
DOI:
https://doi.org/10.3097/LO.2025.1144Keywords:
Agriculture, farmland birds, Europe, extensive grassland, land-use intensityAbstract
Agri-Environment Measures (AEM) are the primary policy tools under the European Union’s Common Agricultural Policy to combat farmland biodiversity loss, yet their effectiveness is highly variable. This synthesis paper summarizes findings of a doctoral thesis investigating drivers of variation in modelled biodiversity responses to AEM: (1) the use of different land-use intensity (LUI) metrics, (2) the types of AEM and their species-specific scale of effect, (3) landscape structural complexity across different regions. First, virtual species (i.e. species with known species-environment relationships) were used to explore how using alternative LUI metrics in biodiversity models influences the estimated species-AEM relationships. Second, bird observations for the Mulde River Basin in Germany were used to model farmland bird responses to different AEM across scales. These relationships varied across species and AEM type, but were generally strongest at the landscape level as compared to locally. Lastly, landscape-moderated effects of AEM on red-backed shrike (Lanius collurio) occurrences were analyzed across three study regions in Germany, Spain and Czechia. Positive shrike-AEM associations were stronger in structurally simple compared to complex landscapes, but this effect was inconsistent across regions. These findings exemplify species-, scale- and landscape-dependent AEM effects, and support AEM’s spatial targeting and regional tailoring.
References
Alarcón-Segura, V., Roilo, S., Paulus, A., Beckmann, M., Klein, N., & Cord, A. F. (2023). Farm structure and environmental context drive farmers’ decisions on the spatial distribution of ecological focus areas in Germany. Landscape Ecology, 38(9), 2293–2305. https://doi.org/10.1007/s10980-023-01709-8 DOI: https://doi.org/10.1007/s10980-023-01709-8
Alliance Environnement. (2020). Evaluation of the impact of the CAP on habitats, landscapes, biodiversity: Final report. Publications Office. https://data.europa.eu/doi/10.2762/818843
Ansell, D., Freudenberger, D., Munro, N., & Gibbons, P. (2016). The cost-effectiveness of agri-environment schemes for biodiversity conservation: A quantitative review. Agriculture, Ecosystems & Environment, 225, 184–191. https://doi.org/10.1016/j.agee.2016.04.008 DOI: https://doi.org/10.1016/j.agee.2016.04.008
Barrasso, C., Krüger, R., Eltner, A., & Cord, A. F. (2024). Mapping indicator species of segetal flora for result-based payments in arable land using UAV imagery and deep learning. Ecological Indicators, 169, 112780. https://doi. org/10.1016/j.ecolind.2024.112780 DOI: https://doi.org/10.1016/j.ecolind.2024.112780
Bartkowski, B., Beckmann, M., Bednář, M., Biffi, S., Domingo-Marimon, C., Mesaroš, M., Schüßler, C., Šarapatka, B., Tarčak, S., Václavík, T., Ziv, G., & Wittstock, F. (2023). Adoption and potential of agri-environmental schemes in Europe: Cross-regional evidence from interviews with farmers. People and Nature, 5(5), 1610–1621. https://doi.org/10.1002/pan3.10526 DOI: https://doi.org/10.1002/pan3.10526
Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-environment schemes in conservation and environmental management. Conservation Biology, 29(4), 1006–1016. https://doi.org/10.1111/cobi.12536 DOI: https://doi.org/10.1111/cobi.12536
Concepción, E. D., & Díaz, M. (2019). Varying potential of conservation tools of the Common Agricultural Policy for farmland bird preservation. Science of the Total Environment, 694, 133618. https://doi.org/10.1016/j. scitotenv.2019.133618 DOI: https://doi.org/10.1016/j.scitotenv.2019.133618
Cord, A. F., Darras, K., Ogawa, R., Barbaro, L., Gerling, C., Kernecker, M., Markova-Nenova, N., Rodriguez-Barrera, G., Zichner, F., & Wätzold, F. (2025). Leveraging passive acoustic monitoring for result-based agri-environmental schemes: Opportunities, challenges and next steps. Biological Conservation, 305, 111042. https://doi.org/10.1016/j.biocon.2025.111042 DOI: https://doi.org/10.1016/j.biocon.2025.111042
Cukor, J., Bartoška, J., Rohla, J., Sova, J., & Machálek, A. (2019). Use of aerial thermography to reduce mortality of roe deer fawns before harvest. PeerJ, 7, e6923. https://doi.org/10.7717/peerj.6923 DOI: https://doi.org/10.7717/peerj.6923
Daskalova, G. N., Phillimore, A. B., Bell, M., Maggs, H. E., & Perkins, A. J. (2019). Population responses of farmland bird species to agri-environment schemes and land management options in Northeastern Scotland. Journal of Applied Ecology, 56(3), 640–650. https://doi.org/10.1111/1365-2664.13309 DOI: https://doi.org/10.1111/1365-2664.13309
EC (2023a). The common agricultural policy: 2023-27. Retrieved September 23, 2024, from https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en
EC (2023b). Organic action plan—European Commission. Retrieved January 18, 2024, from https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en
EC (2024). Key policy objectives of the CAP 2023-27. Retrieved September 25, 2025, from https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27/key-policy-objectives-cap-2023-27_en
EC, Directorat-General for Environment. (2017). Agri-environment schemes: Impacts on the agricultural environment. Publications Office of the European Union. https://data.europa.eu/doi/10.2779/633983
Emmerson, M., Morales, M. B., Oñate, J. J., Batáry, P., Berendse, F., Liira, J., Aavik, T., Guerrero, I., Bommarco, R., Eggers, S., Pärt, T., Tscharntke, T., Weisser, W., Clement, L., & Bengtsson, J. (2016). How Agricultural Intensification Affects Biodiversity and Ecosystem Services. In Advances in Ecological Research (Vol. 55, pp. 43–97). Elsevier. https://doi.org/10.1016/bs.aecr.2016.08.005 DOI: https://doi.org/10.1016/bs.aecr.2016.08.005
European Council. (2025). Timeline – History of the CAP. Retrieved September 24, 2025, from https://www.consilium.europa.eu/en/policies/the-common-agricultural-policy-explained/timeline-history-of-cap/
European Space Agency. (2024). Meet the future of Earth Observation: Super-Resolution Data - Earth Online. Retrieved June 6, 2025, from https://earth.esa.int/eogateway/news/meet-the-future-of-earth-observation-super-resolution-data
Firbank, L. G., Petit, S., Smart, S., Blain, A., & Fuller, R. J. (2008). Assessing the impacts of agricultural intensification on biodiversity: A British perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 777–787. https://doi.org/10.1098/rstb.2007.2183 DOI: https://doi.org/10.1098/rstb.2007.2183
Gamero, A., Brotons, L., Brunner, A., Foppen, R., Fornasari, L., Gregory, R. D., Herrando, S., Hořák, D., Jiguet, F., Kmecl, P., Lehikoinen, A., Lindström, Å., Paquet, J. Y., Reif, J., Sirkiä, P. M., Škorpilová, J., van Strien, A., Szép, T., Telenský, T., … Voříšek, P. (2017). Tracking Progress Toward EU Biodiversity Strategy Targets: EU Policy Effects in Preserving its Common Farmland Birds. Conservation Letters, 10(4), 394–401. https://doi.org/10.1111/conl.12292 DOI: https://doi.org/10.1111/conl.12292
Hagemann, N., Gerling, C., Hölting, L., Kernecker, M., Markova-Nenova, N. N., Wätzold, F., ... & Cord, A. F. (2025). Improving result-based schemes for nature conservation in agricultural landscapes—challenges and best practices from selected European countries. Regional Environmental Change, 25(1), 12. https://doi.org/10.1007/s10113-024-02324-2 DOI: https://doi.org/10.1007/s10113-024-02324-2
Jänicke, C., Ansbak Petersen, K., Schmidts, P., Müller, D., & Rudbeck Jepsen, M. (2024). Harmonized IACS inventory (Version 1.1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.14384070
Jungandreas, A., Roilo, S., Strauch, M., Václavík, T., Volk, M., & Cord, A. F. (2022). Response of endangered bird species to land-use changes in an agricultural landscape in Germany. Regional Environmental Change, 22(1), 1–14. https://doi.org/10.1007/s10113-022-01878-3 DOI: https://doi.org/10.1007/s10113-022-01878-3
Kehoe, L., Kuemmerle, T., Meyer, C., Levers, C., Václavík, T., & Kreft, H. (2015). Global patterns of agricultural land-use intensity and vertebrate diversity. Diversity and Distributions, 21(11), 1308–1318. https://doi.org/10.1111/ddi.12359 DOI: https://doi.org/10.1111/ddi.12359
Kleijn, D., & Sutherland, W. J. (2003). How effective are European agri-environment schemes in conserving and promoting biodiversity? Journal of Applied Ecology, 40(6), 947–969. https://doi.org/10.1111/j.1365-2664.2003.00868.x DOI: https://doi.org/10.1111/j.1365-2664.2003.00868.x
Lange, M., Feilhauer, H., Kühn, I., & Doktor, D. (2022). Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sensing of Environment, 277, 112888. https://doi.org/10.1016/j.rse.2022.112888 DOI: https://doi.org/10.1016/j.rse.2022.112888
Lomba, A., Alves, P., Jongman, R. H. G., & McCracken, D. I. (2015). Reconciling nature conservation and traditional farming practices: A spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside. Ecology and Evolution, 5(5), 1031–1044. https://doi.org/10.1002/ece3.1415 DOI: https://doi.org/10.1002/ece3.1415
Maes, J., Teller, A., Erhard, M., Condé, S., Vallecillo, S., Barredo, J. I., Paracchini, M. L., Abdul Malak, D., Trombetti, M., Vigiak, O., Zulian, G., Addamo, A. M., Grizzetti, B., Somma, F., Hagyo, A., Vogt, P., Polce, C., Jones, A., Marin, A. I., … Santos-Martín, F. (2020). Mapping and assessment of ecosystems and their services: An EU wide ecosystem assessment in support of the EU biodiversity strategy. Publications Office of the European Union. https://data.europa.eu/doi/10.2760/757183
Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., Nowakowski, A., Wojtkowski, C., Krupiński, M., Krätzschmar, E., & Schauer, P. (2020). Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing, 12(21), Article 21. https://doi.org/10.3390/rs12213523 DOI: https://doi.org/10.3390/rs12213523
Marja, R., Kleijn, D., Tscharntke, T., Klein, A. M., Frank, T., & Batáry, P. (2019). Effectiveness of agri-environmental management on pollinators is moderated more by ecological contrast than by landscape structure or land-use intensity. Ecology Letters, 22(9), 1493–1500. https://doi.org/10.1111/ele.13339 DOI: https://doi.org/10.1111/ele.13339
Paulus, A., Hagemann, N., Baaken, M. C., Roilo, S., Alarcón-Segura, V., Cord, A. F., & Beckmann, M. (2022). Landscape context and farm characteristics are key to farmers’ adoption of agri-environmental schemes. Land Use Policy, 121, 106320. https://doi.org/10.1016/j.landusepol.2022.106320 DOI: https://doi.org/10.1016/j.landusepol.2022.106320
Pe’er, G., Bonn, A., Bruelheide, H., Dieker, P., Eisenhauer, N., Feindt, P. H., Hagedorn, G., Hansjürgens, B., Herzon, I., Lomba, Â., Marquard, E., Moreira, F., Nitsch, H., Oppermann, R., Perino, A., Röder, N., Schleyer, C., Schindler, S., Wolf, C., … Lakner, S. (2020). Action needed for the EU Common Agricultural Policy to address sustainability challenges. People and Nature, 2(2), 305–316. https://doi.org/10.1002/pan3.10080 DOI: https://doi.org/10.1002/pan3.10080
Pe’er, G., Finn, J. A., Díaz, M., Birkenstock, M., Lakner, S., Röder, N., Kazakova, Y., Šumrada, T., Bezák, P., Concepción, E. D., Dänhardt, J., Morales, M. B., Rac, I., Špulerová, J., Schindler, S., Stavrinides, M., Targetti, S., Viaggi, D., Vogiatzakis, I. N., & Guyomard, H. (2022). How can the European Common Agricultural Policy help halt biodiversity loss? Recommendations by over 300 experts. Conservation Letters, 15(6), e12901. https://doi.org/10.1111/conl.12901 DOI: https://doi.org/10.1111/conl.12901
Pe’er, G., Zinngrebe, Y., Hauck, J., Schindler, S., Dittrich, A., Zingg, S., Tscharntke, T., Oppermann, R., Sutcliffe, L. M. E., Sirami, C., Schmidt, J., Hoyer, C., Schleyer, C., & Lakner, S. (2017). Adding Some Green to the Greening: Improving the EU’s Ecological Focus Areas for Biodiversity and Farmers. Conservation Letters, 10(5), 517–530. https://doi.org/10.1111/conl.12333 DOI: https://doi.org/10.1111/conl.12333
Preidl, S., Lange, M., & Doktor, D. (2020). Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery. Remote Sensing of Environment, 240(2019), 111673. https://doi.org/10.1016/j.rse.2020.111673 DOI: https://doi.org/10.1016/j.rse.2020.111673
Ranc, N., Santini, L., Rondinini, C., Boitani, L., Poitevin, F., Angerbjörn, A., & Maiorano, L. (2017). Performance tradeoffs in target-group bias correction for species distribution models. Ecography, 40(9), 1076–1087. https://doi.org/10.1111/ecog.02414 DOI: https://doi.org/10.1111/ecog.02414
Reif, J., Gamero, A., Hološková, A., Aunins, A., Chodkiewicz, T., Hristov, I., Kurlavičius, P., Leivits, M., Szép, T., & Voříšek, P. (2024). Accelerated farmland bird population declines in European countries after their recent EU accession. Science of The Total Environment, 946, 174281. https://doi.org/10.1016/j.scitotenv.2024.174281 DOI: https://doi.org/10.1016/j.scitotenv.2024.174281
Rigal, S., Dakos, V., Alonso, H., Auniņš, A., Benkő, Z., Brotons, L., Chodkiewicz, T., Chylarecki, P., de Carli, E., del Moral, J. C., Domşa, C., Escandell, V., Fontaine, B., Foppen, R., Gregory, R., Harris, S., Herrando, S., Husby, M., Ieronymidou, C., … Devictor, V. (2023). Farmland practices are driving bird population decline across Europe. Proceedings of the National Academy of Sciences, 120(21), e2216573120. https://doi.org/10.1073/pnas.2216573120 DOI: https://doi.org/10.1073/pnas.2216573120
Roilo, S. (2022). sroilo/Multiscale_SDM: Multiscale_SDM_v1.0 [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.6761798
Roilo, S. (2024a). Modelling impacts of agricultural practices on biodiversity in Europe [PhD thesis, Dresden University of Technology]. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-926699
Roilo, S. (2024b). sroilo/Landscape_complexity_AES: Landscape_complexity_AES [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.10630881
Roilo, S., Engler, J. O., Václavík, T., & Cord, A. F. (2023). Landscape-level heterogeneity of agri-environment measures improves habitat suitability for farmland birds. Ecological Applications, 33(1), e2720. https://doi.org/10.1002/eap.2720 DOI: https://doi.org/10.1002/eap.2720
Roilo, S., Hofmeester, T. R., Frauendorf, M., Widén, A., & Cord, A. F. (2024). The untapped potential of camera traps for farmland biodiversity monitoring: Current practice and outstanding agroecological questions. Remote Sensing in Ecology and Conservation, n/a(n/a). https://doi.org/10.1002/rse2.426 DOI: https://doi.org/10.1002/rse2.426
Roilo, S., Paulus, A., Alarcón-Segura, V., Kock, L., Beckmann, M., Klein, N., & Cord, A. F. (2024). Quantifying agricultural land-use intensity for spatial biodiversity modelling: Implications of different metrics and spatial aggregation methods. Landscape Ecology, 39(3), 55. https://doi.org/10.1007/s10980-024-01853-9 DOI: https://doi.org/10.1007/s10980-024-01853-9
Roilo, S., Spake, R., Bullock, J. M., & Cord, A. F. (2024). A cross-regional analysis of red-backed shrike responses to agri-environmental schemes in Europe. Environmental Research Letters, 19(3), 034004. https://doi.org/10.1088/1748-9326/ad264a DOI: https://doi.org/10.1088/1748-9326/ad264a
Sharps, E., Hawkes, R. W., Bladon, A. J., Buckingham, D. L., Border, J., Morris, A. J., Grice, P. V., & Peach, W. J. (2023). Reversing declines in farmland birds: How much agri-environment provision is needed at farm and landscape scales? Journal of Applied Ecology, 60(4), 568–580. https://doi.org/10.1111/1365-2664.14338 DOI: https://doi.org/10.1111/1365-2664.14338
SMEKUL. (2020). Integriertes Verwaltungs- und Kontrollsystem (InVeKoS) Sachsen.
SMUL. (2025). Zentrale Artdatenbank (ZenA) Sachsen—Natur und Biologische Vielfalt—Sachsen.de. Retrieved June 10, 2025, from https://www.natur.sachsen/zentrale-artdatenbank-zena-sachsen-6905.html
Spake, R., Bellamy, C., Graham, L. J., Watts, K., Wilson, T.,Norton, L. R., Wood, C. M., Schmucki, R., Bullock, J. M., & Eigenbrod, F. (2019). SUPINF_An analytical framework for spatially targeted management of natural capital. Nature Sustainability, 2(2), 90–97. https://doi.org/10.1038/s41893-019-0223-4 DOI: https://doi.org/10.1038/s41893-019-0223-4
Staggenborg, J., & Anthes, N. (2022). Long-term fallows rate best among agri-environment scheme effects on farmland birds—A meta-analysis. Conservation Letters, 15(4), e12904. https://doi.org/10.1111/conl.12904 DOI: https://doi.org/10.1111/conl.12904
Temme, A. J. A. M., & Verburg, P. H. (2011). Mapping and modelling of changes in agricultural intensity in Europe. Agriculture, Ecosystems and Environment, 140(1–2), 46– 56. https://doi.org/10.1016/j.agee.2010.11.010 DOI: https://doi.org/10.1016/j.agee.2010.11.010
Topping, C. J., Dalby, L., & Valdez, J. W. (2019). Landscape-scale simulations as a tool in multi-criteria decision making to support agri-environment schemes. Agricultural Systems, 176, 102671. https://doi.org/10.1016/j.agsy.2019.102671 DOI: https://doi.org/10.1016/j.agsy.2019.102671
Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2021). Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology & Evolution, 36(10), 919–930. https://doi.org/10.1016/j.tree.2021.06.010 DOI: https://doi.org/10.1016/j.tree.2021.06.010
Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., Bengtsson, J., Clough, Y., Crist, T. O., Dormann, C. F., Ewers, R. M., Fründ, J., Holt, R. D., Holzschuh, A., Klein, A. M., Kleijn, D., Kremen, C., Landis, D. A., Laurance, W., … Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biological Reviews, 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x DOI: https://doi.org/10.1111/j.1469-185X.2011.00216.x
Václavík, T., Beckmann, M., Bednář, M., Brdar, S., Breckenridge, G., Cord, A. F., Domingo-Marimon, C., Gosal, A., Langerwisch, F., Paulus, A., Roilo, S., Šarapatka, B., Ziv, G., & Čejka, T. (2024). Farming system archetypes help explain the uptake of agri-environment practices in Europe. Environmental Research Letters, 19(7), 074004. https://doi.org/10.1088/1748-9326/ad4efa DOI: https://doi.org/10.1088/1748-9326/ad4efa
van Zanten, B. T., Verburg, P. H., Espinosa, M., Gomez-y-Paloma, S., Galimberti, G., Kantelhardt, J., Kapfer, M., Lefebvre, M., Manrique, R., Piorr, A., Raggi, M., Schaller, L., Targetti, S., Zasada, I., & Viaggi, D. (2014). European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agronomy for Sustainable Development, 34(2), 309–325. https://doi.org/10.1007/s13593-013-0183-4 DOI: https://doi.org/10.1007/s13593-013-0183-4
Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay,T. A., de Grissac, S., Demšar, U., English, H. M., Franconi, N., Gómez-Laich, A., Griffiths, R. C., Kay, W. P., Morales, J.M., Potts, J. R., Rogerson, K. F., Rutz, C., Spelt, A., Trevail,A. M., Wilson, R. P., & Börger, L. (2020). Optimizing the use of biologgers for movement ecology research. Journal of Animal Ecology, 89(1), 186–206. https://doi.org/10.1111/1365-2656.13094 DOI: https://doi.org/10.1111/1365-2656.13094
Ziv, G., Gosal, A., Wool, R., Gunning, J., Václavík, T., Langerwisch, F., Beckmann, M., Paulus, A., Müller, B., Will, M., Cord, A., Roilo, S., Bullock, J., Evans, P., Domingo-Marimon, C., & Pau,J. M. (2021). D2.5 BESTMAP Conceptual Framework Design & Architecture (update). Retrieved September 25, 2025, from https://bestmap.eu/getatt.php?filename=oo_2999.pdf DOI: https://doi.org/10.3897/arphapreprints.e82404
Żmihorski, M., Kotowska, D., Berg, Å., & Pärt, T. (2016). Evaluating conservation tools in Polish grasslands: the occurrence of birds in relation to agri-environment schemes and Natura 2000 areas. Biological conservation, 194, 150-157. https://doi.org/10.1016/j.biocon.2015.12.007 DOI: https://doi.org/10.1016/j.biocon.2015.12.007
Zurell, D., König, C., Malchow, A.-K., Kapitza, S., Bocedi, G., Travis, J., & Fandos, G. (2022). Spatially explicit models for decision-making in animal conservation and restoration. Ecography, 2022(4). https://doi.org/10.1111/ecog.05787 DOI: https://doi.org/10.1111/ecog.05787
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Stephanie Roilo

This work is licensed under a Creative Commons Attribution 4.0 International License.




