Blue-green infrastructure as a new trend and an effective tool for water management in urban areas




Blue-green infrastructure, Sustainable development, Climate Change, Urban ecology, Rainwater management


Blue-green infrastructures (BGI) integrate solutions implemented to enhance water management and landscape values for more climateresilient and livable cities. BGI have created an opportunity to renew the natural structure of water balance in cities through the increase in rainwater retention and enlargement of permeable areas. The review of the literature on BGI development and solutions showed that the most popular BGI elements in terms of urban water quantity and quality were rain gardens, green roofs, vertical greening systems, and permeable pavements. Their structure and effectiveness were presented and reviewed. Despite the consensus between researchers that BGI benefit urban hydrology, differences in runoff decreased (2%-100%) lowering the peak flows (7%-70%) and infiltration (to 60%) or evapotranspiration (19%-84%) were reported. Due to an individual technical structure, each BGI element plays a specific role and there is no universal BGI solution against water-related problems. We inferred that the most effective ones were individually adapted solutions, which prevent from a stressor. The greater variety of solutions in a given area, the more benefits for the urban environment. Our analyses showed that a holistic and co-creative approach to create blue-green networks should be considered in modern water management plans.


Abdo, P., Huynh, B. P., Irga, P. J., Torpy, F. R. 2019. Evaluation of air flow through an active green wall biofilter. Urban Forestry & Urban Greening 41, 75-84. DOI:10.1016/j.ufug.2019.03.013 DOI:

Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., Pulvirenti, B. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review. Atmospheric Environment 162, 71-86. DOI:10.1016/j.atmosenv.2017.05.014 DOI:

Allmond, G. 2017. The First Garden City? Environment and utopianism in an Edwardian institution for the insane poor. Journal of Historical Geography 56, 101-112. DOI:10.1016/j.jhg.2017.03.004 DOI:

Alsubih, M., Arthur, S., Wright, G., Allen, D. 2017. Experimental study on the hydrological performance of a permeable pavement. Urban Water Journal 14(4), 427-434. DOI:10.1080/1573062x.2016.1176221 DOI:

Andrew, R. F. 2017. Spatial Evaluation of Multiple Benefits to Encourage Multi-Functional Design of Sustainable Drainage in Blue-Green Cities. Water 9(12), 953. DOI:10.3390/w9120953 DOI:

ArchDaily 2019. Green Line House/Przemek Olczyk/Mobius Architekci. [3] [Accessed 25 June 2020].

Aspect Studios 2018. One Central Park. [6] [Accessed 25 June 2020].

Australian Design Review 2009. Architecture: Green Wall at Marriott Hotel, Sydney. [12] [Accessed 25 June 2020].

Autixier, L., Mailhot, A., Bolduc, S., Madoux-Humery, A. S., Galarneau, M., Prevost, M., Dorner, S. 2014. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Science of the Total Environment 499, 238-247. DOI:10.1016/j.scitotenv.2014.08.030 DOI:

Baryła, A., Gnatowski, T., Karczmarczyk, A., Szatyłowicz, J. 2019. Changes in Temperature and Moisture Content of an Extensive-Type Green Roof. Sustainability 11(9), 2498. DOI:10.3390/su11092498 DOI:

Baryła, A., Karczmarczyk, A., Brandyk, A., Bus, A. 2018. The influence of a green roof drainage layer on retention capacity and leakage quality. Water Science and Technology 77(12), 2886-2895. DOI:10.2166/wst.2018.283 DOI:

Benedict, M. A., McMahon, E. T. 2002. Green Infrastructure: Smart Conservation for the 21st Century. Sprawl Watch Clearinghouse Monograph Series, Washington.

Benedict, M. A., McMahon, E. T. 2006. Green Infrastructure: Linking Landscapes and Communities. Island Press, Washington.

Berndtsson, J. C. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering 36(4), 351-360. DOI:10.1016/j.ecoleng.2009.12.014 DOI:

Besir, A. B., Cuce, E. 2018. Green roofs and facades: A comprehensive review. Renewable & Sustainable Energy Reviews 82, 915-939. DOI:10.1016/j.rser.2017.09.106 DOI:

Booth, D. B., Leavitt, J. 1999. Field evaluation of permeable pavement systems for improved stormwater management. Journal of the American Planning Association 65(3), 314-325. DOI:10.1080/01944369908976060 DOI:

Brears, R.C. 2018. Blue and Green Cities. The role of Blue-Green infrastructure in managing urban water resources. Macmillan Publishers Ltd, London. DOI:

Cai, W. L., Huang, H., Chen, P. N., Huang, X. L., Gaurav, S., Pan, Z., Lin, P. 2020. Effects of biochar from invasive weed on soil erosion under varying compaction and slope conditions: comprehensive study using flume experiments. Biomass Conversion and Biorefinery. DOI:10.1007/s13399-020-00943-3 DOI:

Coma, J., Perez, G., de Gracia, A., Bures, S., Urrestarazu, M., Cabeza, L. F. 2017. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment 111, 228-237. DOI:10.1016/j.buildenv.2016.11.014 DOI:

Corsi, S. R., Graczyk, D. J., Geis, S. W., Booth, N. L., Richards, K. D. 2010. A Fresh Look at Road Salt: Aquatic Toxicity and Water-Quality Impacts on Local, Regional, and National Scales. Environmental Science & Technology 44(19), 7376-7382. DOI:10.1021/es101333u DOI:

Credit Valley Conservation (CVC). 2015. Lessons Learned: CVC Stormwater Management and Low Impact Development Monitoring and Performance Assessment Guide. [Accessed 27 November 2020].

Davis, T. 2007. The Bronx River Parkway and photography as an instrument of landscape reform. Studies in the History of Gardens & Designed Landscapes 27(2), 113-141. DOI:10.1080/14601176.2007.10435461 DOI:

DelVecchio, T., Welker, A., Wadzuk, B. M. 2020. Exploration of Volume Reduction via Infiltration and Evapotranspiration for Different Soil Types in Rain Garden Lysimeters. Journal of Sustainable Water in the Built Environment 6(1), 04019008. DOI:10.1061/jswbay.0000894 DOI:

Dietz, M. E. 2007. Low impact development practices: A review of current research and recommendations for future directions. Water Air and Soil Pollution 186(1-4), 351-363. DOI:10.1007/s11270-007-9484-z DOI:

Dietz, M. E., Clausen, J. C. 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air and Soil Pollution 167(1-4), 123-138. DOI:10.1007/s11270-005-8266-8 DOI:

Dunnett, N., Kingsbury, N. 2004. Planting green roofs and living walls, Timber Press Inc., Portland.

Ebrahimian, A., Wadzuk, B., Traver, R. 2019. Evapotranspiration in green stormwater infrastructure systems. Science of the Total Environment, 688, 797-810. DOI:10.1016/j.scitotenv.2019.06.256 DOI:

European Commission 2013a. Building a Green Green Infrastructure for Europe. Publications Office of the European Union, Luxembourg. [Accessed 9 February 2020].

European Commission 2013b. Communication of the European Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Green Infrastructure - Increasing Europe's Natural Capital. COM(2013) 249 final. [Accessed 9 February 2020].

European Commission 2019. Communication of the European Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal. COM(2019) 640 final. [Accessed 9 February 2020].

Fassman, E. A., Blackbourn, S. 2010. Urban Runoff Mitigation by a Permeable Pavement System over Impermeable Soils. Journal of Hydrologic Engineering 15(6), 475-485. DOI:10.1061/(asce)he.1943-5584.0000238 DOI:

Francis, L. F. M., Jensen, M. B. 2017. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban Forestry & Urban Greening 28, 167-176. DOI:10.1016/j.ufug.2017.10.015 DOI:

Fritz, M. 2017a. Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (eds.), Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice. Springer, Cham, pp. 91-109.

Fritz, M. 2017b. Nature-Based Solutions and Buildings - The Power of Surfaces to Help Cities Adapt to Climate Change and to Deliver Biodiversity. In: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (eds.), Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice. Springer, Cham, pp. 159-183.

Getter, K. L., Rowe, D. B., Andresen, J. A. 2007. Quantifying the effect of slope on extensive green roof stormwater retention. Ecological Engineering 31(4), 225-231. DOI:10.1016/j.ecoleng.2007.06.004 DOI:

Ghofrani, Z., Sposito, V., Faggian, R. 2016. Designing resilient regions by applying Blue- Green Infrastructure concepts. Sustainable City Xi 204, 493-505. DOI:10.2495/SC160421 DOI:

Ghofrani, Z., Sposito, V., Faggian, R. 2020. Maximising the Value of Natural Capital in a Changing Climate Through the Integration of Blue-Green Infrastructure. Journal of Sustainable Development of Energy Water and Environment Systems-Jsdewes 8(1), 213-234. DOI:10.13044/j.sdewes.d7.0279 DOI:

Gillespies 2018. Crossrail place roof garden. [4] [Accessed 25 June 2020].

Green roofs 2018. Potsdamer Platz. [10] [Accessed 25 June 2020].

Green roofs 2019. Free library of Philadelphia Parkway Central. [11] [Accessed 25 June 2020].

Hermy, M. 2012. Landscape Ecology. [Accessed 14 March 2020].

Huang, X. L., Xiong, J. 2011. Performance of permeable asphalt pavement during rainfall infiltration. Advances in Civil Engineering Pts 1-4, 90-93,774-777. DOI:10.4028/ DOI:

Ioja, I. C., Osaci-Costache, G., Breuste, J., Hossu, C. A., Gradinaru, S. R., Onose, D. A., Nita, M. R., Skokanova, H. 2018. Integrating urban blue and green areas based on historical evidence. Urban Forestry & Urban Greening 34, 217-225. DOI:10.1016/j.ufug.2018.07.001 DOI:

Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., Naka, Y. 2017. Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering 13(1), 205-212. DOI:10.1007/s11355-016-0309-3 DOI:

Janiszek, M. 2015. Green infrastructure as a concept for the development of a modern city, City studies, 19, 99-108. [Accessed 27 April 2020].

Jayasooriya, V. M., Ng, A. W. M., Muthukumaran, S., Perera, B. J. C. 2017. Green infrastructure practices for improvement of urban air quality. Urban Forestry & Urban Greening 21, 34-47. DOI:10.1016/j.ufug.2016.11.007 DOI:

Kazak, J. K., Chruściński, J., Szewrański, S. 2018. The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management. Sustainability 10(12), 4388. DOI:10.3390/su10124388 DOI:

Kim, Y., Eisenberg, D. A., Bondank, E. N., Chester, M. V., Mascaro, G., Underwood, B. S. 2017. Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change. Climatic Change 145(3-4), 397-412. DOI:10.1007/s10584-017-2090-1 DOI:

Koch, K., Ysebaert, T., Denys, S., Samson, R. 2020. Urban heat stress mitigation potential of green walls: A review. Urban Forestry & Urban Greening 55, 126843. DOI:10.1016/j.ufug.2020.126843 DOI:

Kuhn, M. 2003. Greenbelt and Green Heart: separating and integrating landscapes in European city regions. Landscape and Urban Planning 64(1-2), 19-27. DOI:10.1016/s0169-2046(02)00198-6 DOI:

Kusuluoglu, D. D., Aytac, G. 2016. Urban parks and their role on sustainable urban water cycle. Journal of Environmental Protection and Ecology 17(2), 621-628.

Landezine 2015. One Central Park. [7] [Accessed 25 June 2020].

Landezine 2016. Crossrails Station Roof Garden. [5] [Accessed 25 June 2020].

Landezine 2017. Dong Feng Park. [1] [Accessed 25 June 2020].

Landezine 2017. Saint Ouen – Park Of The Docks by Agence Ter. [2] [Accessed 25 June 2020].

Landezine 2019. Grön Bullerskärm by LAND arkitektur. [8] [Accessed 25 June 2020].

Landscape Institute 2013. Green Infrastructure: An Integrated Approach to Land Use, Landscape Institute Policy Statement. [Accessed 24 May 2020].

Legret, M., Colandini, V. 1999. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Science and Technology 39(2), 111-117. DOI:10.1016/s0273-1223(99)00014-1 DOI:

Lens, L., Eggermont, H. 2012. Conservation Biology. [Accessed 14 March 2020].

Li, H., Davis, A. P. 2009. Water Quality Improvement through Reductions of Pollutant Loads Using Bioretention. Journal of Environmental Engineering 135(8), 567-576. DOI:10.1061/(asce)ee.1943-7870.0000026 DOI:

Li, J. K., Zhang, B., Li, Y. J., Li, H. E. 2018. Simulation of Rain Garden Effects in Urbanized Area Based on Mike Flood. Water 10(7), 860. DOI:10.3390/w10070860 DOI:

Liberalesso, T., Cruz, C. O., Silva, C. M., Manso, M. 2020. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 96, 104693. DOI:10.1016/j.landusepol.2020.104693 DOI:

Lin, J. D., Hsu, C. Y., Citraningrum, A., Adhitana, P. 2013. The Impact of Different Types of Permeable Pavement Utilization on Air Temperature above the Pavement. Innovation and Sustainable Technology in Road and Airfield Pavement 723, 678-685. DOI:10.4028/ DOI:

Lin, W. G., Ryu, S., Cho, Y. H. 2014. A case study of flow characteristics of permeable pavements by time and space model. Canadian Journal of Civil Engineering 41(7), 660-666. DOI:10.1139/cjce-2013-0165 DOI:

Little, Ch. 1990. Greenways for America. The Johns Hopkins University Press, Washington.

Liu, W., Feng, Q., Chen, W. P., Wei, W., Deo, R. C. 2019. The influence of structural factors on stormwater runoff retention of extensive green roofs: new evidence from scale-based models and real experiments. Journal of Hydrology 569, 230-238. DOI:10.1016/j.jhydrol.2018.11.066 DOI:

Liu, Y., Li, T., Peng, H. Y. 2018. A new structure of permeable pavement formitigating urban heat island. Science of the Total Environment 634, 1119-1125. DOI:10.1016/j.scitotenv.2018.04.041 DOI:

Lu, G. Y., Torzs, T., Liu, P. F., Zhang, Z. Y., Wang, D. W., Oeser, M., Grabe, J. 2020. Dynamic Response of Fully Permeable Pavements: Development of Pore Pressures under Different Modes of Loading. Journal of Materials in Civil Engineering 32(7), 04020160. DOI:10.1061/(asce)mt.1943-5533.0003217 DOI:

Lucke, T., Beecham, S. 2011. Field investigation of clogging in a permeable pavement system. Building Research and Information 39(6), 603-615. DOI:10.1080/09613218.2011.602182 DOI:

Mayrand, F., Clergeau, P. 2018. Green Roofs and Green Walls for Biodiversity Conservation: A Contribution to Urban Connectivity? Sustainability 10(4), 985. DOI:10.3390/su10040985 DOI:

McIntyre, J. K., Davis, J. W., Incardona, J. P., Stark, J. D., Anulacion, B. F., Scholz, N. L. 2014. Zebrafish and clean water technology: Assessing soil bioretention as a protective treatment for toxic urban runoff. Science of the Total Environment 500, 173-180. DOI:10.1016/j.scitotenv.2014.08.066 DOI:

Meiarashi, S., Ishida, M., Fujiwara, T., Hasebe, M., Nakatsuji, T. 1996. Noise reduction characteristics of porous elastic road surfaces. Applied Acoustics 47(3), 239-250. DOI:10.1016/0003-682x(95)00050-j DOI:

Morakinyo, T. E., Dahanayake, K., Ng, E., Chow, C. L. 2017. Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings 145, 226-237. DOI:10.1016/j.enbuild.2017.03.066 DOI:

Muthanna, T. M., Viklander, M., Thorolfsson, S. T. 2008. Seasonal climatic effects on the hydrology of a rain garden. Hydrological Processes 22(11), 1640-1649. DOI:10.1002/hyp.6732 DOI:

Nelson, K. C., Palmer, M. A., Pizzuto, J. E., Moglen, G. E., Angermeier, P. L., Hilderbrand, R. H., Dettinger, M., Hayhoe, K. 2009. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. Journal of Applied Ecology 46(1), 154-163. DOI:10.1111/j.1365-2664.2008.01599.x DOI:

Niu, Z. G., Lv, Z. W., Zhang, Y., Cui, Z. Z. 2016. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers. Environmental Science and Pollution Research 23(3), 2576-2587. DOI:10.1007/s11356-015-5466-7 DOI:

Peck, S., Kuhn, M. 2001. Design guidelines for green roofs. [Accessed 15 February 2020].

Perez, G., Coma, J., Sol, S., Cabeza, L. F. 2017. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied Energy 187, 424-437. DOI:10.1016/j.apenergy.2016.11.055 DOI:

Perini, K., Ottelé, M. 2014. Designing green façades and living wall systems for sustainable constructions. International Journal of Design & Nature and Ecodynamics 9(1), 31-46. DOI:10.2495/dne-v9-n1-31-46 DOI:

Perini, K., Rosasco, P. 2013. Cost-benefit analysis for green facades and living wall systems. Building and Environment 70, 110-121. DOI:10.1016/j.buildenv.2013.08.012 DOI:

Perkins, S. E., Alexander, L. V., Nairn, J. R. 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters 39(20). DOI:10.1029/2012gl053361 DOI:

Pęczkowski, G., Orzepowski, W., Pokładek, R., Kowalczyk, T., Żmuda, R., Wójcik, R. (2016). Retention properties of the type of extensive green roofs as an example of model tests. Acta Scientiarum Polonorum-Formatio Circumiectus 15(3), 113-120. DOI:10.15576/asp.fc/2016.15.3.113 DOI:

Radic, M., Dodig, M. B., Auer, T. 2019. Green Facades and Living Walls-A Review Establishing the Classification of Construction Types and Mapping the Benefits. Sustainability 11(17), 4579. DOI:10.3390/su11174579 DOI:

Rosenfeld, A. H., Akbari, H., Romm, J. J., Pomerantz, M. 1998. Cool communities: strategies for heat island mitigation and smog reduction. Energy and Buildings 28(1), 51-62. DOI:10.1016/s0378-7788(97)00063-7 DOI:

Rowe, D. B. 2011. Green roofs as a means of pollution abatement. Environmental Pollution 159(8-9), 2100-2110. DOI:10.1016/j.envpol.2010.10.029 DOI:

Saadatian, O., Sopian, K., Salleh, E., Lim, C. H., Riffat, S., Saadatian, E., Toudeshki, A., Sulaiman, M. Y. 2013. A review of energy aspects of green roofs. Renewable & Sustainable Energy Reviews 23, 155-168. DOI:10.1016/j.rser.2013.02.022 DOI:

Sanicola, O., Lucke, T., Devine, J. 2018. Using permeable pavements to reduce the environmental impacts of urbanisation. International Journal of Geomate 14(41), 159-166. DOI:10.21660/2018.41.Key3 DOI:

Scholz, M., Grabowiecki, P. 2007. Review of permeable pavement systems. Building and Environment 42(11), 3830-3836. DOI:10.1016/j.buildenv.2006.11.016 DOI:

Shafique, M., Kim, R., Rafiq, M. 2018. Green roof benefits, opportunities and challenges - A review. Renewable & Sustainable Energy Reviews 90, 757-773. DOI:10.1016/j.rser.2018.04.006 DOI:

Siwiec, E., Erlandsen, A. M., Vennemo, H. 2018. City Greening by Rain Gardens - Costs and Benefits. Environmental Protection and Natural Resources 29(1), 1–5. DOI:10.2478/oszn-2018-0001 DOI:

Soulis, K. X., Ntoulas, N., Nektarios, P. A., Kargas, G. 2017. Runoff reduction from extensive green roofs having different substrate depth and plant cover. Ecological Engineering 102, 80-89. DOI:10.1016/j.ecoleng.2017.01.031 DOI:

Sun, W. J., Lu, G. Y., Ye, C., Chen, S. W., Hou, Y., Wang, D. W., Wang, L. B., Oeser, M. 2018. The State of the Art: Application of Green Technology in Sustainable Pavement. Advances in Materials Science and Engineering 2018, 1-19. DOI:10.1155/2018/9760464 DOI:

Susca, T., Gaffin, S. R., Dell'Osso, G. R. 2011. Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution 159(8-9), 2119-2126. DOI:10.1016/j.envpol.2011.03.007 DOI:

Szewrański, S., Chruściński, J., van Hoof, J., Kazak, J. K., Świąder, M., Tokarczyk-Dorociak, K., Żmuda, R. 2018. A Location Intelligence System for the Assessment of Pluvial Flooding Risk and the Identification of Storm Water Pollutant Sources from Roads in Suburbanised Areas. Water 10(6). DOI:10.3390/w10060746 DOI:

Teemusk, A., Mander, U. 2006. The use of greenroofs for the mitigation of environmental problems in urban areas. Sustainable City IV:Urban Regeneration and Sustainability 93, 3-17. DOI:10.2495/sc060011 DOI:

Urban blue-green grids 2020. Green facade in Amsterdam. https://www.urbangreen [13] [Accessed 25 June 2020].

UrbanNext 2020. Zollhallen Plaza: a Climate Adaption Tool. [9] [Accessed 25 June 2020].

Vacek, P., Struhala, K., Matejka, L. 2017. Life-cycle study on semi intensive green roofs. Journal of Cleaner Production 154, 203-213. DOI:10.1016/j.jclepro.2017.03.188 DOI:

Verhoef, H. A. 2012. Community Ecology. [Accessed 14 March 2020]. DOI:

Versini, P. A., Kotelnikova, N., Poulhes, A., Tchiguirinskaia, I., Schertzer, D., Leurent, F. 2018. A distributed modelling approach to assess the use of Blue and Green Infrastructures to fulfil stormwater management requirements. Landscape and Urban Planning 173, 60-63. DOI:10.1016/j.landurbplan.2018.02.001 DOI:

Voskamp, I. M., Van de Ven, F. H. M. 2015. Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Building and Environment 83, 159-167. DOI:10.1016/j.buildenv.2014.07.018 DOI:

Wałęga, A., Radecki-Pawlik, A., Kaczor, G. 2013. Naturalne sposoby zagospodarowania wód opadowych (Natural methods of rainwater management). Wydawnictwo Uniwersytetu Rolniczego w Krakowie, Kraków.

Wang, D. W., Liu, P. F., Leng, Z., Leng, C., Lu, G. Y., Buch, M., Oeser, M. 2017. Suitability of PoroElastic Road Surface (PERS) for urban roads in cold regions: Mechanical and functional performance assessment. Journal of Cleaner Production 165, 1340-1350. DOI:10.1016/j.jclepro.2017.07.228 DOI:

William, R., Goodwell, A., Richardson, M., Le, P. V. V., Kumar, P., Stillwell, A. S. 2016. An environmental cost-benefit analysis of alternative green roofing strategies. Ecological Engineering 95, 1-9. DOI:10.1016/j.ecoleng.2016.06.091 DOI:

Winer, R. 2000. National Pollutant Removal Performance Database for Stormwater Treatment Practices- 2nd Edition. Center for Watershed Protection, Ellicott City.

Xing, Y. G., Jones, P. 2019. In-situ monitoring of energetic and hydrological performance of a semi-intensive green roof and a white roof during a heatwave event in the UK, Indoor and Built Environment. DOI:10.1177/1420326x19887218 DOI:

Yamagata, H., Nasu, M., Yoshizawa, M., Miyamoto, A., Minamiyama, M. 2008. Heat island mitigation using water retentive pavement sprinkled with reclaimed wastewater. Water Science and Technology 57(5), 763-771. DOI:10.2166/wst.2008.187 DOI:

Yang, H., Florence, D. C., McCoy, E. L., Dick, W. A., Grewal, P. S. 2009. Design and hydraulic characteristics of a field-scale bi-phasic bioretention rain garden system for storm water management. Water Science and Technology 59(9), 1863-1872. DOI:10.2166/wst.2009.186 DOI:

Yang, H. B., Dick, W. A., McCoy, E. L., Phelan, P. L., Grewal, P. S. 2013. Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal. Ecological Engineering 54, 22-31. DOI:10.1016/j.ecoleng.2013.01.005 DOI:

Yuan, J., Dunnett, N. 2018. Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species. Urban Forestry & Urban Greening 35, 57-65. DOI:10.1016/j.ufug.2018.08.005 DOI:

Yuan, J., Dunnett, N., Stovin, V. 2017. The influence of vegetation on rain garden hydrological performance. Urban Water Journal 14(10), 1083-1089. DOI:10.1080/1573062x.2017.1363251 DOI:

Zevenbergen, C., Cashman, A., Evelpidou, N., Pasche, E., Garvin, S., Ashley, R. 2011. Urban flood management. CRC Press, London. DOI:

Zhang, L. Y., Oyake, Y., Morimoto, Y., Niwa, H., Shibata, S. 2019a. Rainwater storage/infiltration function of rain gardens for management of urban storm runoff in Japan. Landscape and Ecological Engineering 15(4), 421-435. DOI:10.1007/s11355-019-00391-w DOI:

Zhang, X., Chen, N. C., Sheng, H., Ip, C., Yang, L., Chen, Y., Sang, Z., Tadesse, T., Lim, T. P. Y., Rajabifard, A., Bueti, C., Zeng, L. L., Wardlow, B., Wang, S., Tang, S. Y., Xiong, Z., Li, D., Niyogi, D. 2019b. Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment 693, 11. DOI:10.1007/s11355-019-00391-w DOI:

ZinCo GmbH. 2020. Planning guide. Systems for pitched green roofs. [Accessed 8 September 2020].

Zou, S. Z., Zhu, Y. R., Wei, C. J., Tao, B. H. 2018. Discussions on the Design of the Pool Landscape in the Rain Garden Construction. IOP Conference Series: Materials Science and Engineering 322, 052031. DOI:10.1088/1757-899x/322/5/052031 DOI:





How to Cite

Pochodyła, E., Glińska-Lewczuk, K., & Jaszczak, A. (2021). Blue-green infrastructure as a new trend and an effective tool for water management in urban areas. Landscape Online, 92.